CXL - Advancing Data Center Architectures with Memory Tiering

Danny Moore,
Senior Product Marketing Manager, Rambus

9-Aug-2023
Core Counts Increasing, AI Models Growing in Size

- Memory systems are becoming a critical bottleneck
- Relentless demand for more memory bandwidth and more memory capacity
- Meta DLRM: >10T parameters (Oct 2022)

Sources:
Summary of Data Center Memory Challenges

Decreasing memory bandwidth per core

Huge latency and capacity gap

Costs to achieve desired memory density and bandwidth

Stranded memory resources and low utilization

CXL Decouples the Memory Controller from the CPU and Provides Options for New Server Architectures to Address Memory Challenges
CXL Memory Tiers Span the Latency Gap

- CXL delivers new expansion options for hot DRAM, with no impact to software applications
- CXL also introduces memory tiering, to the Data Center, much like storage tiering before it
- The industry is now working on software infrastructure to take advantage of these new tiers
The CXL-Enabled Server

Traditional Server

- CPU
- Native DRAM
- DDR

Maximum configuration of 12 DDR5 DRAM channels

CXL-Enabled Server

- CPU
- Native DRAM
- DDR

Addition of CXL DRAM can provide >2x the memory capacity and 50% more memory bandwidth

CXL allows for significant memory capacity and bandwidth expansion within a server, leveraging existing PCIe electrical interfaces.
Benefits of CXL-Attached Memory

1. Increase memory bandwidth & capacity
2. Improve bandwidth per unit of capacity
3. Media independence
 • For the first time a CPU will be able to utilize a prior generation of DDR memory
4. Improve support for persistent memory technology
5. Lower solution costs
 • Less expensive DRAM
 • 1/3 the pins for the same memory bandwidth

Addition of CXL DRAM provides >2x the memory capacity and 1.3-1.5x the memory bandwidth (GB/s)

All while leveraging the existing PCIe electrical interface

CXL enables new memory alternatives and lower solution costs
What Will these Memory Modules Look Like?

- **CXL EDSFF Memory Modules**
 - A standard “front of server” form factor for data center and enterprise servers
 - e.g., E3.S 1T (seen in NVMe SSDs today)

- **CXL Add-in Cards (AIC)**
 - PCI-SIG CEM or custom AIC variants
 - Allows deployment of standard RDIMMs for memory supplier flexibility

- **New Form Factors**
 - The industry should expect new standard form factors to emerge which combine some elements of both EDSFF and AIC

CXL memory modules will come in a variety of form factors, including standard EDSFF.
Scaling CXL-Attached Memory

- Reducing over-provisioning, and hence memory stranding, are key objectives of large data centers.
- CXL Pooling Memory Controllers → Lowest latency, moderate scale, specific memory types.
- CXL Fabric Switches → Highest scale, varied memory media, adds GPUs and NICs, latency penalty.

CXL provides mechanisms for CPUs to allocate/deallocate memory from a common pool.
Things We Need to Think About as an Industry

BANDWIDTH
Bandwidth matching between CXL interfaces and memory media

LATENCY
Lowest latency “load to use” memory access

POWER EFFICIENCY
Aligned to server “drive slot” thermals
Save power for memory

SCALABILITY
Maximum capacity density
High radix fanout
Compression
Quality of service

SECURITY
Encrypted links
Encrypted data at rest
Confidential compute
Root of trust

RELIABILITY
Advanced error detection and correction

Ecosystem suppliers will be differentiating offerings in numerous dimensions
New Reliability Challenges & Opportunities

- Components require Data Center, Enterprise-grade RAS capabilities
 - ECC
 - No silent data corruption
 - Performance monitoring

- Flexibility comes at a price
 - Additional connectors, cabling over direct-attached DRAM

- Live serviceability now possible
 - FRUs must be reported and identifiable

Maintaining or improving user-experience is critical
New Management Challenges and Opportunities

- Leverage existing DRAM management
 - Minimize SW/FW development requirements
 - UEFI CDAT
 - SPD, PMIC, etc.

- New component architectures require extended topology reporting
 - PLDM Type 2 PDRs
 - Redfish models

- Standardization is key to deployment
 - Parallel efforts from CXL Consortium, JEDEC, and DMTF
Thank you