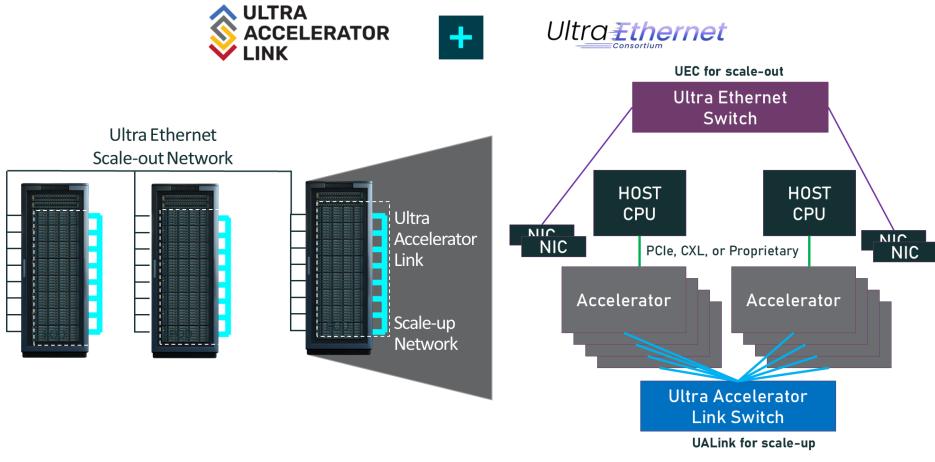
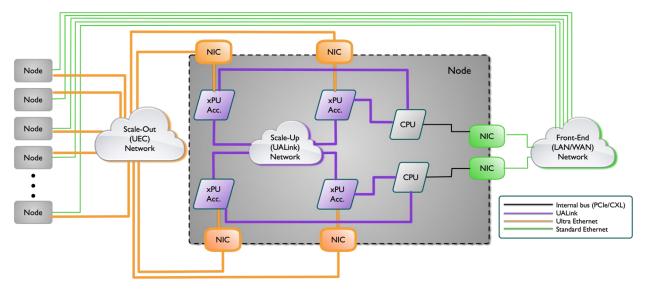
Future of AI Networks: UALink and Ultra Ethernet


J Metz – UEC Chairman Kurtis Bowman – UALink Chairman

OCT 15-17, 2024 SAN JOSE, CA

AI is driving unique challenges for Networking

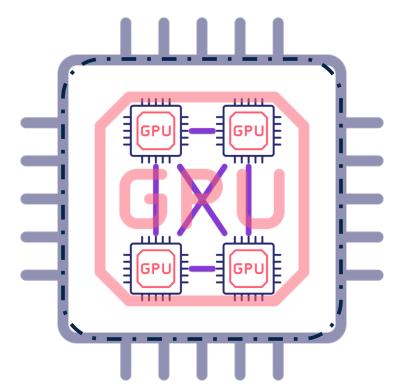
Large scale AI requires scaling <u>up</u> to hundreds/thousands of GPUs Large scale AI requires scaling <u>out</u> to tens/hundreds of thousands of GPUs



Ultra **Ethernet**

Pieces of the Al Puzzle

- AI environments have multiple networks
 - As systems scale, dedicated-purpose fabrics are required
 - Main, general-purpose network
 - Dedicated, Scale-Up network
 - Dedicated, Scale-Out Network
- How are they different?


General Purpose vs. Scale-Up (UALink) versus Scale-Out (UEC) Networks

Scale-Up Network

Or, how to make one giant GPU

- As model and parameter sizes increase, it is more difficult to fit inside of a single GPU memory
- Memory needs to be shared across GPUs, but it needs to act as a single GPU
 - Load/Store operations
- Scale-Up refers to the ability to make several GPUs act like a one giant GPU to complete the task

Ultra Accelerator Link

Partner group of innovators for scale up AI infrastructure

AMDZI ululu cisco

' Google

Hev

Hewlett Packard

intel.

∕∞ Meta

- Microsoft

High Performance

Open

Scalable

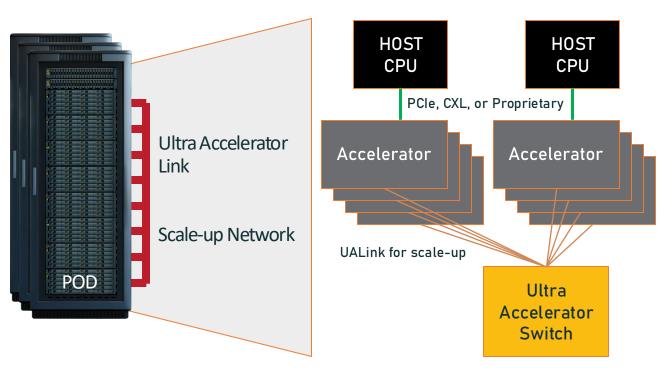
Ultra Accelerator Link 2024

Ultra Accelerator Link (UALink)

- UALink creates an open ecosystem for scale-up connections of many AI accelerators
 - Effectively communicate between accelerators using an open industry standard protocol
 - Easily expand the number of accelerators in a pod up to 1K
 - Optimize the performance needed for compute intensive workloads now and in the future
- An open scale up memory semantic fabric has significant advantages
 - Bandwidth, Latency, Power, and Efficiency
- The Consortium plans to open for members soon
 - The focus of the organization is to release the 1.0 specification by the end of the year

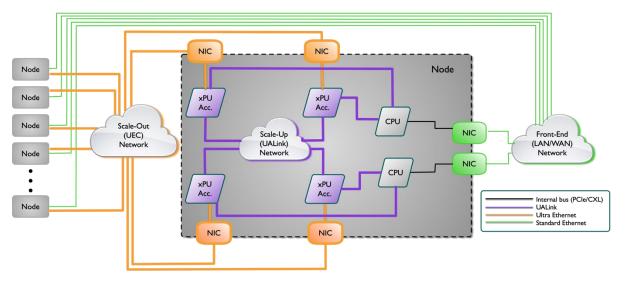
Ultra Accelerator Link Overview

- The UALink interconnect is for scale-up Accelerator-to-Accelerator communication
 - The initial focus will be sharing DDR & HBM memory among accelerators
- Direct load, store, and atomic operations between accelerators (i.e. GPUs)
 - Low latency, high bandwidth fabric for 100's of accelerators in a pod
 - Simple load/store semantics with software coherency
- Supports data rates up to state-of-the-art 200Gbps per lane
- The UALink spec taps into the experience of the Promoters developing and deploying a broad range of accelerators and leverages the proven Infinity Fabric[™] protocol
- Complementary with scale-out approaches such as Ultra Ethernet Consortium (UEC)



UALink Creates the Scale-up Pod

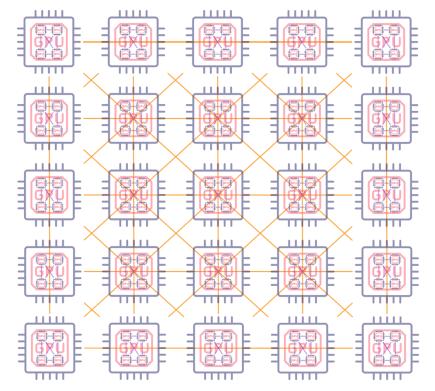
Low latency stack


- Protocol, Transaction, Link, & Physical
- Lower power
 - The simplified UALink stack leads to lower power than Ethernet switching for the same bandwidth
- Lower latency switch
 - Latency <100ns pin-to-pin</p>
- Lower die area
 - Optimizing the Data Layer and Transaction Layer saves significant die area and reduces cost and TCO

Revisiting the Al Puzzle

• What about the Scale-Out network?

General Purpose vs. Scale-Up (UALink) versus Scale-Out (UEC) Networks

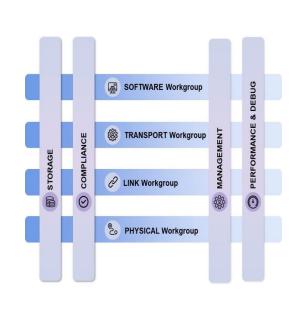


Scale-Out Network

Or, how to connect several giant GPUs

- GPU-GPU communication is critical and requires special consideration at large scale
- Typically DMA and packetized I/O
- Immediate focus of Ultra Ethernet

Ultra **Ethernet**


*topology not to scale

Ultra Ethernet Consortium 2024

2024 Organization and Member

- Full Standards Development
 Organization
- (One of the?) Fastest growing projects in Linux Foundation
- 100+ Companies
- 1300+ individual active contributor volunteers
- 8 Workgroups
 - o Physical
 - o Link Layer
 - o Transport
 - o Software
 - \circ Storage
 - o Management
 - Compliance & Test
 - Performance & Debug

General Members					
C-) Alibaba Cloud		BaidaB度	世纪互联 VNET	ht ByteDance	
cādence°	CORNELIS" NETWORKS	D&LL Technologies	💡 enfabrica	HUAWEI	
IBM		KEYSIGHT TECHNOLOGIES	Lawrence Livermore National Laboratory	Lenovo	
MARVELL	НЗС	VO <iy< th=""><th>🕗 NVIDIA.</th><th>Preferred Networks</th></iy<>	🕗 NVIDIA.	Preferred Networks	
	Ospirent	SYNOPSYS [.]	ZTE 中兴		
Contributor Members					
Accelink	ALPHAWAVE SEMI	AsteraLabs.	Astorfusion	centec	
ciena	Clounix		CREDO	de Prezeñio	
DRIV≢NETS		(Ô) Fatham	FUjitsu	GRAPHCORE	
GROVF	IFRAEO	IIIJ Internet Initiative Jupan		C KALRAY	
kiwe/moore	∠M		MANEOBOOST	MemVerge	
🐠 Міскоснір	Micron	molex		🔁 Qumulo	
Rivos	Ruíjie	Salience	SAMSUNG SDS	3 Sancia National Laboratories	
SAPEON	SCALA COMPUTING	SDTECH 数渡科技	STELIA	formate.	
Tencent 腾讯	VDUR A	Xsıght		1888 (1997) 1997 - 1997 - 1899 -	
*Please note that not all members are displayed on this page.					

Steering Members

Meta

ախտիս

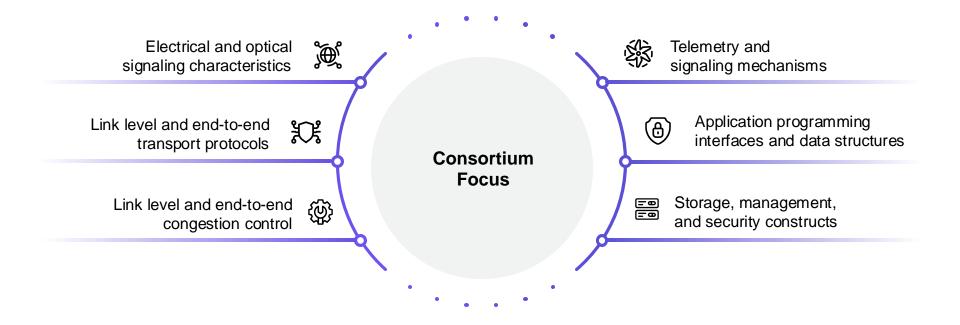
CISCO

Microsoft

EVIDEN

an atos husinos

ORACLE


Hewlett Packard

ARISTA

intel

UEC Technical Goals

Open specifications, APIs, source code for optimal performance of AI and HPC workloads at scale.

UEC Addresses Al Network Needs

Traditional RDMA-Based Networking

Ê

	Required In-Order Delivery, Go-Back-N recovery	Out-of-Order packet delivery with In-Order Message Completion
	Security external to specification	Built-in high-scale, modern security
i.	Flow-level multi-pathing	Packet Spraying (packet-level multipathing)
) •	DC-QCN, Timely, DCTCP, Swift	Sender- and Receiver-based Congestion Control
ŀ	Rigid networking architecture for network tuning	Semantic-level configuration of workload tuning
	Scale to low tens of thousands of simultaneous endpoints	Targeting scale of 1M simultaneous endpoints

Ultra **Ethernet**

