Enhancing CXL Memory RAS through a Forgotten Coding Theory

Enhancing CXL Memory RAS through a Forgotten Coding Theory

Tong Zhang, ScaleFlux Inc.

RS Codes for DRAM Fault Tolerance

❑ Data centers demand strong DRAM fault tolerance

- ✓ **Higher reliability & stability** of data centers
- ✓ **Lower system TCO** by accommodating less reliable, lower cost DRAM chips
- ✓ **Higher resilience** to the security risk caused by DRAM RowHammer attacks

❑ Reed-Solomon (RS) code: One of the most widely used error correction codes (ECC)

FROM IDEA

 \triangleright Adopted by server CPUs for DRAM fault tolerance

□ Standard RS decoding algorithms correct up to $t = \left| \frac{d-1}{2} \right|$ $\frac{-1}{2}$ symbol errors, where d is the minimum distance between any two codewords

Beyond-Minimum-Distance Decoding

Correct **more-than-***t* errors?!

❑ Professor Peter Elias at MIT in 1950s

➢ Rationale: Minimum-distance-based decoding *significantly under-utilizes* the Euclidean code space

Implementation of Standard RS Decoding

Standard RS decoding algorithm **bounded** by minimum distance

Computational Complexity

FROM IDEAS TO IMPACT

Implementation of ultra-low-latency standard RS decoder at reasonable silicon cost

Implementation of Standard RS Decoding: Codeword Interleaving

FROM IDEAS TO IMPACT

2024

✓ **Short decoding latency at low silicon cost** ✗ **Much weaker DRAM fault tolerance strength**

ScaleFlux DRAM-Oriented RS List Decoding

Application to CXL Memory

Application to CXL Memory Metadata: 1~3 bits **CXL.Mem** <u> 1111111</u> 64B cacheline **CPU Zero-cost metadata embedding** DDR5 10 x4 DIMMs 64B cacheline | 16B RS code Puncture 1B 64B cacheline **1B** 18 coder 164B cacheline 16B metadata (81, 65) RS codewordMetadata-aware list decoding: For each possible metadata content, do erasure-based list decoding! Decoding algorithm formulation $\begin{array}{ccc}\n\bullet \\
\bullet\n\end{array}$ Arithmetic optimization $\begin{array}{ccc}\n\bullet \\
\bullet\n\end{array}$ Area-efficient parallel decoder VLSI architecture **MEMORY FABRIC** 2024 FROM IDEAS TO IMPACT

Evaluation and Implementation

❑ Three possible outcome of decoding:

EMORY FABRIC

- **1. Success**: indeed outputs the *correct* codeword (**good**)
- **2. Detected failure**: fails to find a valid codeword and declares a decoding failure (**bad**)
- **3. Mis-correction**: outputs an incorrect but valid codeword (**really bad**)
- \Box FPGA-based platform to confirm the superior error correction power
	- \triangleright Given *e* symbol errors, define $P_{suc}(e)$, $P_{df}(e)$, $P_{mc}(e)$ as the probability of success, detected failure, mis-correction

FROM IDEAS TO IMPACT

 $□$ Silicon implementation: one decoder $@$ 38GB/s decoding throughput and 5ns decoding latency

➢ Integrated into ScaleFlux CXL 3.1 memory controller (launch in early 2025)

For the very first time, bring the beyond-minimum-distance error correction into DRAM fault tolerance

❑ One RS list decoder: 38GB/s decoding throughput and 5ns decoding latency

❑ First use case: CXL memory controller (launch early 2025)

 \triangleright Support both DDR4 and DDR5 with zero-cost per-cacheline metadata embedding

Raise the Standard of DRAM Fault Tolerance

Call to Action

- How to fully exploit such stronger-than-normal error correction?
	- \checkmark System reliability: the impact on the overall system reliability
	- \checkmark Memory cost: deploy less reliable, lower cost DRAM chips
	- \checkmark System security: mitigate security risk caused by DRAM RowHammer attacks
- Industry-wide collaboration across the device, hardware, and software stacks

Thank you!

