Expanding CXL Software Ecosystem
through HMSDK on Linux

....

MEMORY FABRIC ﬂ\ DCP OCT 15-17, 2024
4 A GLosAL
@85 FORUM e S SAN JOSE, CA

ﬁﬁﬁﬁﬁﬁﬁ




Expanding CXL Software Ecosystem
through HMSDK on Linux

o for e ‘ p ’ 2024 FROM IDEAS TO IMPACT



Conventional (Homogeneous) Memory System

* Most systems have the same type of memory in their DIMM slots.
* It just works without software support.

Local DDRS DIMMs

DDR5 Channel

30 ~ 40GB/s Bandwidth
. DDR5 DIMM
= 96GB Capacity Each

Total Bandwidth” | 260~320 GB/s
Total Capacity | 768 GB

Bandwidth : Amount of data that can be sent in a set amount of time

Qi Forum ‘ taon | AJ24 FROM IDEAS TO IMPACT



Heterogeneous Memory System

« CXL memory allows bandwidth/capacity expansion beyond DIMM slot limits.
» But it requires software support for efficient use.

CXL 2.0 Memory Expansion Solution

CXL 2.0 Memory
Expansion Solution
96GB Capacity Each

Total Bandwidth* | 360~480 GB/s 8 //
Total Capacity | 1.15TB

Bandwidth : Amount of data that can be sent in a set amount of time

($r i shon | 2024 FROM IDEAS TO IMPACT

UMMIT




Software Support for CXL Memory

» CXL driver level support.
e In Linux kernel, CXL device driver is at linux/drivers/cxl.

 Memory management(mm) support for the efficient use.

» Based on NUMA abstraction
« CXL memory is detected as a cpuless NUMA node.

* We're working on this under HMSDK project.

Qi Forum FROM IDEAS TO IMPACT



HMSDK

* Heterogeneous Memory Software Development Kit

Applications

v

access pattern-aware
memory management
(hot/cold detection & migration)

heterogeneous memory allocator
(hmalloc APIs)

weighted interleaving
for heterogeneous memory

HMSDK

L4~ MEMORY FABRIC

IR§ FORUM




HMSDK

« Bandwidth Expansion is used when target workloads are bandwidth hungry.
* Achieve speed up for bandwidth-intensive workloads.

Applications

v

Capacity Expansion Custom Allocator

access pattern-aware

memory management
(hot/cold detection & migration)

weighted interleaving
for heterogeneous memory

heterogeneous memory allocator

HMSDK (hmalloc APIs)

v

v

i ) LI ol0 2024 FROM IDEAS TO ITMPACT




HMSDK

» Capacity Expansion is used when target workloads needs more capacity.
* Expand capacity with CXL memory minimizing the additional latency issue.

Applications

v

Bandwidth Expansion i Custom Allocator

access pattern-aware
memory management
(hot/cold detection & migration)

weighted interleaving
for heterogeneous memory

heterogeneous memory allocator

HMSDK (hmalloc APIs)

174 MEMORY FABRIC 33 FROM ITDEAS TO IMPACT




HMSDK

* Custom Allocator is used when users have knowledge of their programs.
« With customized programs using hmalloc APIs such as hmalloc(), hfree(), etc.

Applications

v

Bandwidth Expansion Capacity Expansion
access pattern-aware
memory management

(hot/cold detection & migration)

heterogeneous memory allocator
(hmalloc APIs)

weighted interleaving
for heterogeneous memory

HMSDK

174 MEMORY FABRIC 33 FROM ITDEAS TO IMPACT




HMSDK

» Custom allocator requires software modification.

Applications

v

Bandwidth Expansion Capacity Expansion
access pattern-aware
memory management

(hot/cold detection & migration)

heterogeneous memory allocator
(hmalloc APIs)

weighted interleaving
for heterogeneous memory

HMSDK

4~ MEMORY FABRIC

FORUM




HMSDK

» Bandwidth and capacity expansion DO NOT require software modification.
* Those are OS level techniques.

Applications

v

Custom Allocator
access pattern-aware
memory management

(hot/cold detection & migration)

weighted interleaving
for heterogeneous memory

heterogeneous memory allocator

HMSDK (hmalloc APIs)

by Jottithns : FROM IDEAS TO IMPACT



Bandwidth and Capacity Expansion

* No free lunch for bandwidth and capacity expansion.
* Unlike DIMM attached host memory.

» Bandwidth can be expanded with default 1:1 interleaving.
« But may not utilize the full bandwidth of host memory.

» Capacity can be expanded but there can be performance issues.
* Frequently accessed data might stay in CXL memory.

Qi Forum =« | 2024 2~ FROM IDEAS TO IMPACT



Bandwidth and Capacity Expansion

* No free lunch for bandwidth and capacity expansion.
* Unlike DIMM attached host memory.

« Bandwidth can be expanded with default 1:1 interleaving.
« But may not utilize the full bandwidth of host memory.
-> Weighted interleave

» Capacity can be expanded but there can be performance issues.
* Frequently accessed data might stay in CXL memory.
-> Memory access pattern based migration

Qi Forum FROM IDEAS TO IMPACT



Bandwidth Expansion

Qi Forum | 2024 2 FROM IDEAS TO IMPACT



Bandwidth Expansion (via round-robin interleave)

» Bandwidth can be expanded with conventional 1:1 interleaving.
« But it may not utilize the full bandwidth of host memory.

Conventional System

K Round-robin Interleaving (1:1) \

Data Access Data Access

¥ v ¥ -
oo [HIRRN o [
Memory Memory

Host Memory Bandwidth ~ CXL Memory Bandwidth

{Kvailabﬂe
Bandwidth

Available
Bandwidth

k Underutilized /

Qb Foron iact | 2024 W FROM IDEAS TO IMPACT



Bandwidth Expansion (via weighted interleave)

» Bandwidth can be expanded with conventional 1:1 interleaving.
« But it may not utilize the full bandwidth of host memory.
* Weighted interleaving is needed to handle the bandwidth difference.

Conventional System SK DK
K Round-robin Interleaving (1:1) \ / Weighted Interleaving (2:1) \
Data Access Data Access Data Access Data Access
$ v ¥ $ $ $ v $ $ v
ENE A e, | weror | e | veren | verer, | e
Memory Memory Memory | Memory Memory | Memory
Host Memory Bandwidth ~ CXL Memory Bandwidth Host Memory Bandwidth CXL Memory Bandwidth

Available ﬁlabﬂe Avaﬂab]e\ Available
Bandwidth Bandwidth Bandwidth Bandwidth

. MEMORY FABRIC
w FORUM




Bandwidth Expansion (via weighted interleave)

* The kernel interface: sysfs interface (available from v6.9)
« /sys/kernel/mm/mempolicy/weighted_interleave/nodeN

* Where N is a node number.
* |t stores a value for weight.

 The user interface: numact! -w/--weighted-interleave <nodes> option.
» Set the mempolicy to MPOL_WEIGHTED INTERLEAVE.
» Set nodemask for the given NUMA nodes.

Qi Forum =« | 2024 2~ FROM IDEAS TO IMPACT



Bandwidth Expansion (via weighted interleave)

« Bandwidth can be expanded with weighted interleaving. (e.g. 2:1 interleaving)

« echo 2 > /sys/kernel/mm/mempolicy/weighted interleave/node0 # DRAM node
« echo 1 > /sys/kernel/mm/mempolicy/weighted interleave/nodel # CXL node

Conventional System SK'| SDK
K Round-robin Interleaving (1:1) \ / Weighted Interleaving (2:1) \
Data Access Data Access Data Access Data Access
$ v ¥ $ $ $ v $ $ v
ENE A e, | weror | e | veren | verer, | e
Memory \ Memory Memory | Memory ) Memory | Memory )
Host Memory Bandwidth ~ CXL Memory Bandwidth Host Memory Bandwidth CXL Memory Bandwidth

m {Kvailabﬂe m ﬂ;lable
Bandwidth Bandwidth Bandwidth Bandwidth
k Underutilized / k Fully Utilized /

Qi Forum closm ] N FROM IDEAS TO IMPACT




Bandwidth Expansion (via weighted interleave)

* Then run the target program, <prog>, with numact/ as follows.
* numactl --weighted-interleave 0,1 <prog>

* It reads weights for node0 and nodel then run <prog> in weighted interleave mode.

Conventional System SK DK
K Round-robin Interleaving (1:1) \ / Weighted Interleaving (2:1) \
Data Access Data Access Data Access Data Access
$ v ¥ $ $ $ v $ $ v
ENE A e, | weror | e | veren | verer, | e
Memory Memory Memory | Memory Memory | Memory
Host Memory Bandwidth ~ CXL Memory Bandwidth Host Memory Bandwidth CXL Memory Bandwidth

m {Kvailabﬂe m ﬁlab]e
Bandwidth Bandwidth Bandwidth Bandwidth
k Underutilized / k Fully Utilized /

Qi Forum s | 224 FROM IDEAS TO IMPACT




Bandwidth Expansion (via weighted interleave)

» Experimental result using Intel MLC tool.
» 8:3 weighted interleaving for 8ch DDR5 DRAM + 4ch CMM-DDR5

350

v

S~ 0, 0,
2 300 +21% v ¥31%
- P U
= s P

2 250 . .

x

oo

3 200

£

= 150

(@]

£ 100 198.8 219.1
=

£ 50

(]

2

& 0

2:1 read-write ratio 1:1 read-write ratio

@ DRAM Only Eround-robin interleaving (1:1) @ HMSDK weighted interleaving

MEMORY FABRIC

FORUM ; L FROM TDEAS TO IMPACT



Capacity Expansion

Qi Forum | 2024 2 FROM IDEAS TO IMPACT



DAMON: Data Access MONitor

« DAMON is a data access monitoring framework in the Linux kernel.
» Supported from Linux v5.15, released on Nov 2021.

 DAMON allows memory access checks in upper bounded overhead for scalability.

» But scarifies some accuracy.

Address

Time

. MEMORY FABRIC

w FORUM



DAMOS: DAMON based Operation Schemes

* DAMOS is an access-aware system optimizations engine.

* Make memory management decision based on DAMON.

Address

Time

w?g“gﬂ“g”“'“ 0BAL FROM TDEAS TO IMPACT



DAMOS: DAMON based Operation Schemes

* DAMOS is an access-aware system optimizations engine.
* Make memory management decision based on DAMON.

Address

Time

. MEMORY FABRIC

w FORUM



DAMOS: DAMON based Operation Schemes

* DAMOS is an access-aware system optimizations engine.

* Make memory management decision based on DAMON.

A |
= |- T —— -
< i 11
I I I |F-* ---------------- -
: : : : : : : : :: : COLD -> demote to CXL _:
L4 5%y ———
10 Thet T 1 =
| | | | | | | | | |

CP

Qi Forum on | 2024 FROM IDEAS TO IMPACT



DAMOS: DAMON based Operation Schemes

* DAMOS is an access-aware system optimizations engine.
* Make memory management decision based on DAMON.

enum damos_action {
DAMOS_WILLNEED ,
DAMOS COLD,
DAMOS PAGEOUT,
DAMOS HUGEPAGE,
DAMO S_NOHUGE PAGE,
DAMOS LRU_PRIO,

DAMOS LRU_ DEPRIO,

DAMOS_STAT,
NR_DAMOS ACTIONS,

& SUMMIT

by Forn ‘ aen | 2024 FROM IDEAS TO IMPACT



DAMOS: DAMON based Operation Schemes

* DAMOS is an access-aware system optimizations engine.
* Make memory management decision based on DAMON.
« HMSDK implemented migration actions. (available from Linux v6.11)

enum damos_action {
DAMOS_WILLNEED ,
DAMOS COLD,
DAMOS PAGEOUT,
DAMO S_HUGE PAGE,
DAMO S_NOHUGE PAGE,
DAMOS LRU_ PRIO,
DAMOS LRU_DEPRIO,
, // promotion
, // demotion
DAMOS_STAT,
NR_DAMOS_ACTIONS,

‘9"5“0“”“3“'“ 3 t EDZLF FROM TDEAS TO IMPACT




HMSDK Capacity Expansion

v

(o} CXL on PCle
CPU!

o

CXL




HMSDK Capacity Expansion

v
(o} CXL on PCle
o

CXL

1.25

1.20

1.10

105

0.95

0.90




Normalized Execution Time

HMSDK Capacity Expansion

CXL on PCle

DRAM CXL

1.25

1.20

1.10

105

1.00

0.95

0.90
80GB 70GB 60GB 50GB 40GB 30GB 20GB 10GB




Normalized Execution Time

HMSDK Capacity Expansion

CXL on PCle

DRAM CXL

1.25 DRAM
only

120 Entirely fits into fast DRAM

1.10

105

I e e

0.95

0.90
80GB 70GB 60GB 50GB 40GB 30GB 20GB 10GB

DRAM free space
before redis loading




Normalized Execution Time

HMSDK Capacity Expansion

CXL on PCle

CXL

1.25 DRAM
only

120 Entirely fits into fast DRAM
DAMON not needed!

1.10

105

I e e

0.95

0.90
80GB 70GB 60GB 50GB 40GB 30GB 20GB 10GB

DRAM free space
before redis loading




Normalized Execution Time

HMSDK Capacity Expansion

1.25

1.20

1.10

105

1.00

0.95

0.90

DRAM Only: Performance Upper Bound

80GB

70GB

60GB

50GB 40GB

DRAM free space
before redis loading

30GB

20GB

10GB

CXL on PCle

DRAM CXL
DRAM
only
Entirely fits into fast DRAM
DAMON not needed!
CXL
only

Entirely fits into slow CXL




Normalized Execution Time

HMSDK Capacity Expansion

1.25

1.20

1.10

105

1.00

0.95

0.90

DRAM Only: Performance Upper Bound

80GB

70GB

60GB

50GB 40GB

DRAM free space
before redis loading

30GB

20GB

10GB

CXL
only

Entirely fits into fast DRAM
DAMON not needed!

Entirely fits into slow CXL
(slowdown by 18.8%
compared to DRAM only)




Normalized Execution Time

HMSDK Capacity Expansion

CXL on PCle

DRAM CXL

125 DRAM

only
120 S o QX OnlyRerformance Lower Bound = Entirely fits into fast DRAM

DAMON not needed!

1.15
110 -

CXL
105 only
100 - Entirely fits into slow CXL

DRAM Only: Performance Upper Bound (slowdown by 18.8%

095 compared to DRAM only)
090

80GB 70GB 60GB 50GB 40GB 30GB 20GB 10GB

DRAM free space
before redis loading




Normalized Execution Time

HMSDK Capacity Expansion

1.25

1.20

1.10

105

1.00

0.95

0.90

80GB 70GB 60GB 50GB 40GB 30GB 20GB

DRAM free space
before redis loading

increase memory
pressure

10GB

CXL on PCle

DRAM CXL

perau | |



Normalized Execution Time

HMSDK Capacity Expansion

CXL on PCle

125
1 20 —————¥—ORt-PererRance-owerBouad pre-allocated
cold data
115
110
105
pre-allocated
1010 e e cold data
095
090

80GB 70GB 60GB 50GB 40GB 30GB 20GB 10GB Default

DRAM free space pre-allocated
before redis loading cold data



Normalized Execution Time

HMSDK Capacity Expansion

P Default
125
120 S}I=ORHy-ReHeFRaRee-ewerB-ouhd partial data of
redis goes to CXL
115
1.10
1.05
2 ) e R -~ -t
095 i
090
80GB 70GB 60GB 50GB 40GB 30GB 20GB 10GB
DRAM free space
before redis loading
increase memory
pressure
<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.
(due to insufficient space on DRAM)



Normalized Execution Time

HMSDK Capacity Expansion

P Default
125
1.20 S*=Orty-Rertermanee-tewerBouhd partial data of
redis goes to CXL
115
110
105
half of data of
ooy - redis goes to CXL
095
090
80GB 70GB 60GB 50GB 40GB 30GB 20GB 10GB
DRAM free space
before redis loading
increase memory
pressure
<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.
(due to insufficient space on DRAM)



Normalized Execution Time

HMSDK Capacity Expansion

P Default
125
120 SOt PerernancetowerBohe partial data of
redis goes to CXL
115
110
105
half of data of
/1~ - redis goes to CXL
095
090
80GB 70GB 60GB 50GB 40GB 30GB 20GB 10GB
DRAM free space most data of
before redis loading redis goes to CXL
increase memory
pressure
<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.
(due to insufficient space on DRAM)



Normalized Execution Time

HMSDK Capacity Expansion

PN Default
125
120 SOt PerernancetowerBohe partial data of
redis goes to CXL
115
110
1.05 :
half of data of
COL A Y N R e T T e redis goes to CXL
095 —
090 —
80GB 70GB 60GB 50GB 40GB 30GB 20GB 10GB
DRAM free space most data of
before redis loading redis goes to CXL
increase memory
pressure
<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.
(due to insufficient space on DRAM)



Normalized Execution Time

HMSDK Capacity Expansion

P Default

1.25

1.20

80GB 70GB 60GB 50GB 40GB 30GB 20GB
DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.

2. Partial redis data is allocated on CXL memory.
(due to insufficient space on DRAM)

10GB

Default

DAMON

<HMSDK>



Normalized Execution Time

HMSDK Capacity Expansion

P Default

1.25

1.20

115

o

1.10

105

10 —
095———|| i‘

090 —
70GB 60GB 50GB 20GB 10GB
DRAM free space
before redis loading
increase memory
pressure
<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

Default

DAMON

<HMSDK>

1. Demote cold data from DRAM to CXL memory.



Normalized Execution Time

HMSDK Capacity Expansion

P Default

1.25

1.20

80GB 70GB 60GB 50GB 40GB 30GB 20GB  10GB Default
DRAM free space
before redis loading DAMON

increase memory
pressure

<Default> <HMSDK>
1. DRAM is partially used by non-redis cold data. 1. Demote cold data from DRAM to CXL memory.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)



Normalized Execution Time

HMSDK Capacity Expansion

P Default

1.25

1.20

115

o

1.10

105

10 —
095———|| i‘

090 —
70GB 60GB 50GB 20GB 10GB
DRAM free space
before redis loading
increase memory
pressure
<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

Default

DAMON

<HMSDK>

1. Demote cold data from DRAM to CXL memory.



Normalized Execution Time

HMSDK Capacity Expansion

P Default

1.25

1.20

115

o

1.10

105

10 —
0.95 —I i

090 —
70GB 60GB 50GB 20GB

DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

10GB

Default

DAMON

<HMSDK>
1. Demote cold data from DRAM to CXL memory.
2. Promote more redis data to fast DRAM.

(while keeping cold data on CXL memory)



Normalized Execution Time

HMSDK Capacity Expansion

P Default

1.25

1.20

115

o

1.10

105

10 —
0.95 —I i

090 —
70GB 60GB 50GB 30GB 20GB

DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

10GB

Default

DAMON

migrate hot

<HMSDK>
1. Demote cold data from DRAM to CXL memory.
2. Promote more redis data to fast DRAM.

(while keeping cold data on CXL memory)



Normalized Execution Time

HMSDK Capacity Expansion

P Default BN DAMON

1.25

CXL on PCle

CXL

1.20

115

1.10

105

o

10
095—I i

090 —

70GB 60GB 50GB 20GB

DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

10GB

Default

DAMON

<HMSDK>
1. Demote cold data from DRAM to CXL memory.
2. Promote more redis data to fast DRAM.

(while keeping cold data on CXL memory)



HMSDK Capacity Expansion Evaluation

« The DAMON was turned on just before the memory accesses via YCSB.
 This is more for evaluation.

* In the real world, the DAMON will be running always on the system.
» So other cold data can be demoted earlier.
« Even before the workload(redis) was loaded.

Qi Forum FROM IDEAS TO IMPACT



Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default BN DAMON

1.25

1.20

115

1.10

105

o

10
095—I i

090 —
70GB 60GB 50GB 20GB

DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

10GB

Default

DAMON

<HMSDK>
1. Demote cold data from DRAM to CXL memory.




Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default BN DAMON

1.25

1.20

1.10

105

o

10
095—I i

090 —
70GB 60GB 50GB 20GB

DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

10GB

Default

DAMON

<HMSDK>
1. Demote cold data from DRAM to CXL memory.



Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default BN DAMON

1.25

1.20

115

1.10

105

o

10
095—I

090 —
70GB 60GB 50GB 20GB

DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

10GB

Default

DAMON

<HMSDK>
1. Demote cold data from DRAM to CXL memory.



Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default EEm DAMON

1.25

1.20

115

1.10

105

o

10
095—I i

090 —
70GB 60GB 50GB 20GB

DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

10GB

Default

DAMON

<HMSDK>
1. Demote cold data from DRAM to CXL memory.




Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default EEm DAMON

1.25

1.20

115

1.10

105

o

10
095—I i

090 —
70GB 60GB 50GB 20GB

DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

10GB

Default

DAMON

<HMSDK>
1. Demote cold data from DRAM to CXL memory.
2. Keep demote cold data




Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default EEm DAMON

1.25

1.20

1.10

105

10
095—I i

090 —

o

70GB 60GB 50GB 20GB 10GB Default

DRAM free space

before redis loading DAMON
increase memory miarate cold
pressure
<Default> <HMSDK>
1. DRAM is partially used by non-redis cold data. 1. Demote cold data from DRAM to CXL memory.
2. Partial redis data is allocated on CXL memory. 2. Keep demote cold data

(due to insufficient space on DRAM)



Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default EEm DAMON

1.25

1.20

115

1.10

105

o

10
095—I i

090 —
70GB 60GB 50GB 20GB

DRAM free space
before redis loading

increase memory
pressure

<Default>

1. DRAM is partially used by non-redis cold data.
2. Partial redis data is allocated on CXL memory.

(due to insufficient space on DRAM)

10GB

Default

DAMON

<HMSDK>
1. Demote cold data from DRAM to CXL memory.
2. Keep demote cold data




Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default BN DAMON

1.25

1.20

115

1.10

105

10
095———|| il

090 —

o

70GB 60GB 50GB 20GB 10GB Default
DRAM free space
before redis loading DAMON
increase memory
pressure
<Default> <HMSDK>
1. DRAM is partially used by non-redis cold data. 1. Demote cold data from DRAM to CXL memory.
2. Partial redis data is allocated on CXL memory. 2. Keep demote cold data

(due to insufficient space on DRAM) 3. More redis data can be allocated on DRAM.



Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default B DAMON [ ] DAMON
1.25 Default
1.20 S7ee-ORTy eroaRee-=oYe 56t
1.15
110
105 Default
100 - DAMON
095 —
090 —
70GB 60GB 50GB 20GB 10GB Default
DRAM free space
before redis loading DAMON
increase memory
pressure
<Default> <HMSDK>
1. DRAM is partially used by non-redis cold data. 1. Demote cold data from DRAM to CXL memory.
2. Partial redis data is allocated on CXL memory. 2. Keep demote cold data

(due to insufficient space on DRAM) 3. More redis data can be allocated on DRAM.



Normalized Execution Time

HMSDK Capacity Expansion (always DAMON)

P Default B DAMON [ ] DAMON
1.25 Default
1.20 S7ee-ORTy eroaRee-=oYe 56t
DAMON
1.15
110
105 ____ Default
100 - DAMON
095 —
090 —
70GB 60GB 50GB 20GB 10GB Default
DRAM free space
before redis loading DAMON
increase memory
pressure
<Default> <HMSDK>
1. DRAM is partially used by non-redis cold data. 1. Demote cold data from DRAM to CXL memory.
2. Partial redis data is allocated on CXL memory. 2. Keep demote cold data

(due to insufficient space on DRAM) 3. More redis data can be allocated on DRAM.



Collaboration with DAMON community

* This work was done and presented at Open Source Summit Europe 2024.
« DAMON Recipes: Ways to Save Memory Using a Linux Kernel Subsystem in the Real World
* Presented by DAMON maintainer Seonglae Park@Meta and Honggyu Kim@SK hynix.

* The slide and video are available at
e https://osseu2024.sched.com/event/1ej2S

Qi Forum taee | 24 W FROM IDEAS TO IMPACT


https://youtu.be/xKJO4kLTHOI?si=L1zDRsFM2VE0aRx5

Heterogeneous Memory Allocator
(Custom Allocator)

o for e ‘ p ’ 2024 FROM IDEAS TO IMPACT



Heterogeneous Memory Allocator

* This can be used when users have knowledge of their program.
* If users know which memory objects are cold,

» then explicitly replace normal allocation APIs to hmalloc APIs.

o ——— — —



Heterogeneous Memory Allocator

* This can be used when users have knowledge of their program.
* If users know which memory objects are cold,
» then explicitly replace normal allocation APIs to hmalloc APIs.
« HMSDK library usage (libhmalloc.so)

 explicit allocation to a specific NUMA node (e.g. CXL memory)
 e.g. hmalloc(), hcalloc(), hfree(), etc.

* numactl like hmctl tool
* numactl applies process level mempolicy.

normal ARIs
malloc/reallocl...

* but hmctl applies mempolicy only to hmalloc area. hmalloc APIs

hmalloc/hreallocl...

o ——— — —

» support --preferred and --membind modes.

L4~ MEMORY FABRIC
IR§ FORUM



Heterogeneous Memory Allocator

#include <hmalloc.h> $ ./example &
e [1] 49288

int main() { 255 MiB is allocated by malloc ().
char *p = malloc (256 * MiB); 511 MiB is allocated by hmalloc ().
char *hp = hmalloc (512 * MiB); Press enter to stop.
memset (p, 'x', sz * MiB);
memset (hp, 'x', hsz * MiB);

$ numastat -c -p $!

getchar(); /* walt here */ Per-node process memory usage (in MBs) for PID 49288
(example)

hfree (hp) ; Node 0 Node 1 Node 2 Node 3 Total

free (p);

return O0;

SGh | 2024 FROM IDEAS TO IMPACT %x_\;\ s’

SUMMIT

MEMORY FABRIC
| FORUM

— =



Heterogeneous Memory Allocator

#include < $ ./example &
... [1] 49288

int main() { 255 MiB is allocated by malloc ().
char *p = malloc (256 * MiB); 511 MiB is allocated by hmalloc ().
char *hp = ( * MiB) ; Press enter to stop.
memset (p, 'x', sz * MiB);
memset (hp, 'x', hsz * MiB);

$ numastat -c -p $!

getchar(); /* walt here */ Per-node process memory usage (in MBs) for PID 49288
(example)
(hp) ; Node 0 Node 1 Node 2 Node 3 Total
free (p);
return O0;

At | 2024 FROM IDEAS TO IMPACT -—\__\;\ sl

& SUMMIT

MEMORY FABRIC
| FORUM

— =



Heterogeneous Memory Allocator

#include < S ./example &
... [1] 49288

int main() { 255 MiB is allocated by malloc ().
char *p = malloc (256 * MiB); 511 MiB is allocated by hmalloc ().
char *hp = ( * MiB) ; Press enter to stop.
memset (p, 'x', sz * MiB);
memset (hp, 'x', hsz * MiB);

$ numastat -c -p $!

getchar(); /* walt here */ Per-node process memory usage (in MBs) for PID 49288
(example)
(hp) ; Node 0 Node 1 Node 3 Total
free (p);
return O0;

At | 2024 FROM IDEAS TO IMPACT -—\__\;\ sl

& SUMMIT

MEMORY FABRIC
| FORUM

— =



Heterogeneous Memory Allocator

#include < S ./example &
... [1] 49288

int main() { 255 MiB is allocated by malloc ().
char *p = malloc (256 * MiB); 511 MiB is allocated by hmalloc ().
char *hp = ( * MiB) ; Press enter to stop.
memset (p, 'x', sz * MiB);
memset (hp, 'x', hsz * MiB);

$ numastat -c -p $!

getchar(); /* walt here */ Per-node process memory usage (in MBs) for PID 49288
(example)
(hp) ; Node 0 Node 1 Node 2
free (p);
return O0;

At | 2024 FROM IDEAS TO IMPACT -—\\&\& sl

& SUMMIT

MEMORY FABRIC
| FORUM




Heterogeneous Memory Allocator

#include <hmalloc.h> $ ./example &
e [1] 49288

int main() { 255 MiB is allocated by malloc ().
char *p = malloc (256 * MiB); 511 MiB is allocated by hmalloc ().
char *hp = hmalloc (512 * MiB); Press enter to stop.
memset (p, 'x', sz * MiB);
memset (hp, 'x', hsz * MiB);

$ numastat -c -p $!

getchar(); /* walt here */ Per-node process memory usage (in MBs) for PID 49288
(example)

hfree (hp) ;

free (p);

return O0;

SGh | 2024 FROM IDEAS TO IMPACT %x_\;\ s’

SUMMIT

MEMORY FABRIC
| FORUM




Conclusion

Qi Forum taee | 24 W FROM IDEAS TO IMPACT



HMSDK v3.0 release

« HMSDK v3.0 was released Sep 2024 based on Linux v6.11!
 Fully aligned with various open-source projects.
* The official Linux kernel can directly be used for HMSDK.
 https://github.com/skhynix/hmsdk/releases/tag/hmsdk-v3.0

HMSDK

weighted interleaving DAMON D e hmalloc allocator

since Linux v6.9 memory management since HMSDK v3.0
since Linux v6.11

Af Forom " FROM IDEAS TO IMPACT



https://github.com/skhynix/hmsdk/releases/tag/hmsdk-v3.0

HMSDK v3.0 release

 Linux kernel
« weighted interleave (available from v6.9)
« DAMON based tiered memory management (available from v6.11)

* numactl
« -w/--weighted-interleave option (available on master)

« damo (DAMON user-space tool)
* Interface for hot/cold migration (available from v2.4.0)
» Support multiple kdamonds with yaml| format.

Qi Forum FROM IDEAS TO IMPACT



Other Projects

* hwloc (Hardware locality)
« Support HWLOC_MEMBIND_WEIGHTED INTERLEAVE (available from hwloc-2.11.0)

 UMF (Unified Memory Framework)
« Support UMF_NUMA_MODE_WEIGHTED_INTERLEAVE (proposed)

Qi Forum FROM IDEAS TO IMPACT



Conclusion

* We're trying to expand CXL software ecosystem on Linux.
* To make CXL memory usable by end users.
 Such as software developers and system admins.

* New memory system requires software changes.
 Especially for major open-source projects such as Linux kernel, etc.
* Need to lower the huddle of using software techniques.

Qi Forum | 2024 2 FROM IDEAS TO IMPACT



Thank You!

https://github.com/skhynix/hmsdk

Qi Forum 2024 FROM IDEAS TO IMPACT


https://github.com/skhynix/hmsdk

	Slide 1: Expanding CXL Software Ecosystem through HMSDK on Linux
	Slide 2: Expanding CXL Software Ecosystem through HMSDK on Linux
	Slide 3: Conventional (Homogeneous) Memory System
	Slide 4: Heterogeneous Memory System
	Slide 5: Software Support for CXL Memory
	Slide 6: HMSDK
	Slide 7: HMSDK
	Slide 8: HMSDK
	Slide 9: HMSDK
	Slide 10: HMSDK
	Slide 11: HMSDK
	Slide 12: Bandwidth and Capacity Expansion
	Slide 13: Bandwidth and Capacity Expansion
	Slide 14: Bandwidth Expansion
	Slide 15: Bandwidth Expansion (via round-robin interleave)
	Slide 16: Bandwidth Expansion (via weighted interleave)
	Slide 17: Bandwidth Expansion (via weighted interleave)
	Slide 18: Bandwidth Expansion (via weighted interleave)
	Slide 19: Bandwidth Expansion (via weighted interleave)
	Slide 20: Bandwidth Expansion (via weighted interleave)
	Slide 21: Capacity Expansion
	Slide 22: DAMON: Data Access MONitor
	Slide 23: DAMOS: DAMON based Operation Schemes
	Slide 24: DAMOS: DAMON based Operation Schemes
	Slide 25: DAMOS: DAMON based Operation Schemes
	Slide 26: DAMOS: DAMON based Operation Schemes
	Slide 27: DAMOS: DAMON based Operation Schemes
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: HMSDK Capacity Expansion Evaluation
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Collaboration with DAMON community
	Slide 64: Heterogeneous Memory Allocator (Custom Allocator)
	Slide 65: Heterogeneous Memory Allocator
	Slide 66: Heterogeneous Memory Allocator
	Slide 67: Heterogeneous Memory Allocator
	Slide 68: Heterogeneous Memory Allocator
	Slide 69: Heterogeneous Memory Allocator
	Slide 70: Heterogeneous Memory Allocator
	Slide 71: Heterogeneous Memory Allocator
	Slide 72: Conclusion
	Slide 73: HMSDK v3.0 release
	Slide 74: HMSDK v3.0 release
	Slide 75: Other Projects
	Slide 76: Conclusion
	Slide 77: Thank You!

