
Title Slide

Unified API for diverse memory
technologies

Unified Memory Framework

Server: Composable Memory Systems (CMS)

SERVER

Title/Presenter Slide

Igor Chorazewicz

Unified Memory Framework

• Heterogenous memory systems challenges

• Solving the challenges using UMF

• UMF architecture overview

• Status and plans

• Summary and Call to Action

Agenda

Content

• Increased demand for data processing leads to memory subsystems of modern server
platforms becoming heterogeneous

• A single application can leverage multiple types of memory:

• Local DRAM

• HBM

• CXL-attached memory

• GPU memory

• Utilizing heterogenous memory requires:

• A way to discover available memory resources

• Deciding where to place the data and how to migrate it between memory types

• Interacting with different APIs for allocation & data migration

Heterogenous memory systems

Content

Goal: Unify path for heterogeneous memory allocations and resource discovery among
higher-level runtimes (SYCL, OpenMP, Unified Runtime, MPI, oneCCL, etc.) and external
libs/applications.

What it is:

• A single project to accumulate technologies related to memory management.

• Flexible mix-and-match API allows tuning for a particular use case.

• Complement (not compete with) OS capabilities.

• OS - page-size granularity; Applications – object-level abstraction.

Unified Memory Framework (UMF)

Content

Content

Common Memory Allocation Structure

Allocator API

Heap manager

Memory provider

Application

VirtualAllocmmap

C-style API
(malloc/free)

Heap Manager

C++-compliant allocators & memory resources

GPU Drive

System-level interface:
• Page-size granularity.
• Might be expensive.

Application-level interfaces:
• Object-size granularity
• Fine grain allocations

Memory pooling/caching:
• Pools big chunks from memory

provider
• Service app allocations
• Various implementations optimized

for different use cases
• (concurrency, fragmentation, etc.)

UMF: High-Level Idea

Content

Application

libc

OS

Kernel
Mode

User
Mode

malloc

mmap

Memory
pool

Application

UMF

OS

umfPoolMalloc

Pool 2Pool 1 Pool 3

Local DRAM
Local

DRAM
Local HBM

Remote Memory
over CXL.mem

GPU
Memory

what (size, alignment) to allocate
what & where (in which pool) to

allocate

Driver

• Multiple heaps with different

properties

• Keep certain kinds of
allocations separate from
others

• Mapped to different HW

Regular malloc flow UMF flow

• Expose different kinds of memory as pools/heaps with different properties and behavior. For example:

• Pool 1 resides on GPU.

• Pool 2 relies on OS memory tiering - do the same as regular malloc.

• Pool 3 is bound to DRAM & CXL.mem (allows OS to migrate pages between DRAM and CXL.mem but prohibits migration to HBM). Heap manager
can do page monitoring (like Linux DAMON) and make advice to OS (madvise).

UMF Architecture

Content

UMF

disjoint
pool

scalable
pool

Pool managers interface

Memory provider interface

OS provider

Allocation
API

Pool creation
API

Memory tracker

Observability
API

L0 provider

L0 Driver OS

jemalloc
pool

Memspaces

Memory Selector API

Topology
Discovery

HWLOC

• UMF is a framework to build allocators and organize memory

pools.

• Pool is a combination of pool manager and memory provider.

• Memory provider does actual memory (coarse-grain) allocations.

• Heap manager manages the pool and services fine-grain malloc/free

request.

• UMF defines heap manager and memory provider interfaces.

• Provides implementations (disjoint pool, scalable pool, OS provider) of

heap managers and memory providers.

• Heap managers and Memory provider implementations are static libraries

that can be linked on demand.

• External heap managers and memory providers are allowed.

• Users can choose existing ones or provide their own.

High-level API: memspaces

Content

• Memspace is an abstraction over memory resources: it’s a collection of memory targets.

• Memspace can be used as a means of discovery or for pool creation

• Memory target represents a single memory source (numa node, memory-mapped file, etc.)
and can have certain properties (e.g. latency, bandwidth, capacity)

• UMF exposes predefined memspaces (HOST_ALL, HBM, LOWEST_LATENCY, etc.)

memspace HOST_ALL

Memory_target
:

Numa 0

Memory_ target :

Numa 1

memspace
HBM

Memory_ target :

Numa 1

Basic Example

Content

// Create memory pool of HBM memory from predefined memspace
umf_memory_pool_handle_t hbmPool = NULL;
umf_memspace_handle_t MEMSPACE_HBW = umfMemspaceHighestBandwidthGet();
umfPoolCreateFromMemspace(MEMSPACE_HBW, NULL, &hbmPool);

// Create memory pool on top of the highest capacity memory
umf_memory_pool_handle_t highCapPool = NULL;
umf_memspace_handle_t MEMSPACE_HIGH_CAP = umfMemspaceHighestCapacityGet();
umfPoolCreateFromMemspace(MEMSPACE_HIGH_CAP, NULL, &highCapPool);

// Allocate HBM memory from the pool
void* ptr1 = umfPoolMalloc(hbmPool, 1024);

// Allocate memory from the highest capacity pool
void* ptr2 = umfPoolMalloc(highCapPool, 1024);

umfFree(ptr1); // Pool is found automatically
umfFree(ptr2); // Pool is found automatically

m
al

lo
c/

fr
ee

 f
lo

w
Po

o
l c

re
at

io
n

fl

ow

UMF: Interop capabilities

Content

Memory is a key for efficient interoperability

• Modern applications are complex.

• Multiple libraries/runtimes might be used by a single
application.

• Memory allocated by one library might be used by another
library.

• UMF aggregates data about allocations.

• Can provide memory properties of allocated regions.

• Example: Memory allocated by OpenMP/SYCL is used by MPI for
scale-out. UMF can tell:

• Whether it is OS-managed or GPU driver-managed memory.

• Which NUMA node is used.

• MPI can get IPC handle to map memory to another process.

Application

UMF

OS

Allocation API

Pool 2Pool 1 Pool 3

Local
DRAM

Local HBM
Remote Memory

over CXL.mem

GPU
Memory

Driver

Lib 1

Observability API

Lib 2

Allocate
memory Use previously

allocated memory

Current Status and Plans for 2024

Content

• First release as internal component of oneAPI 2025.0

• Open-source repo is created for open development.

• Key stakeholders:

• Unified Runtime: USM memory pooling (used by SYCL and OpenMP offload).

• Intel MPI: interop with SYCL and OpenMP based on Observability & IPC API.

• oneCCL: memory pooling for big allocations and IPC functionality.

• libiomp: build OpenMP 6.0 support on top of UMF.

• CAL: malloc/free intercept based on UMF

• UMF unifies interfaces to work with memory hierarchies.​

• UMF improves efficiency by code/technology reuse.​

• Set of building blocks to adapt to particular needs.​

• UMF handles interop between runtimes by aggregating data about all allocations.

• Try out UMF when dealing with heterogenous memory or building a custom memory
allocator

• Where to find additional information

• https://oneapi-src.github.io/unified-memory-framework/introduction.html

• https://github.com/oneapi-src/unified-memory-framework

Summary and Call to Action

Content

https://oneapi-src.github.io/unified-memory-framework/introduction.html
https://github.com/oneapi-src/unified-memory-framework

Thank you!

End

	Slide 1: Unified Memory Framework
	Slide 2: Unified Memory Framework
	Slide 3: Agenda
	Slide 4: Heterogenous memory systems
	Slide 5: Unified Memory Framework (UMF)
	Slide 6: Common Memory Allocation Structure
	Slide 7: UMF: High-Level Idea
	Slide 8: UMF Architecture
	Slide 9: High-level API: memspaces
	Slide 10: Basic Example
	Slide 11: UMF: Interop capabilities
	Slide 12: Current Status and Plans for 2024
	Slide 13: Summary and Call to Action
	Slide 14: Thank you!

