
Cloud-Scale Deployment with CXL Memory



Samir Rajadnya, Microsoft

Ahmad Danesh, Astera Labs

Cloud-Scale Deployment with CXL Memory



• Every application has different memory requirements

• General Purpose Compute must accommodate all requirements

• Example: in-memory database requires max capacity with moderate BW/latency

Application-Specific Memory Requirements

General Purpose Compute 
(CPU Centric Architecture))

Example Application
(In-memory database)

Latency 1-3 2

Bandwidth 1-3 3

Capacity 1-3 1

Cost 1 1

1 = Highest Priority



• Problem Statements

• As CPU cores increase, more memory is required (maintain core:memory ratios)

• Memory is not scaling at the same rate as CPU cores

• Higher capacity DIMMs (3DS) cost ~2x of lower capacity DIMMs

• Sometimes we need more capacity than possible through locally attached

• Long term, CPUs may move away from multi-socket architectures

• Solution

• CXL provides cost-effective and performant solution to expand memory capacity

• CXL memory makes it possible to reuse DIMMs

• Advanced CXL features such as pooled/shared memory enable new functionalities 
not possible with locally attached memory

General Purpose Compute Architecture



CXL Solution Requirements

CPU Interoperability 

Security

In-band System Management 
and Telemetry 

RAS

Application Performance

Out-of-band System 
Management and Telemetry 

DIMM Interoperability 

Firmware

Management Tools

Device drivers

OS/Kernel/BMC

Application

Platform Solution Stack

Silicon

System

CXL Solution Requirements

CXL Memory Controller

Silicon

Firmware

OS

System FW
FW-First OS-First

BMC

OOB

Notifications

Event Records

Telemetry

FW update

Health

CXL Mailbox

CXL RAS Flow

HDM

DOE



Holistic Cloud-Scale CXL Memory Solution
Platform Solution StackCXL Solution Requirements

Application Performance

RAS

Security

In-band System Management 
and Telemetry 

Out-of-band System 
Management and Telemetry 

CPU Interoperability 

DIMM Interoperability 

Application

OS/Kernel/BMC

Platform APIs 

Device drivers

Systems

Embedded Software

Silicon



Performance Observations

• Unloaded latency: CXL delivers ~same latency as remote and ~2x local

• Loaded latency: CXL delivers smooth latency/bandwidth response

• Bandwidth: CXL delivers much higher bandwidth than remote; ~same as local

Bandwidth and Latency Considerations
CPU1CPU0

CXL CXL

Data from Astera Labs and Intel
https://dl.acm.org/doi/10.1145/3669900

https://dl.acm.org/doi/10.1145/3669900


Tiering Interleaving

How to Utilize CXL-Attached Memory

CPU

CXL CXL

CPU

CXL CXL

• Separate NUMA nodes 

• Local (hot) + CXL (warm) tiers

• Single NUMA node 

• Data striped across local and CXL



CXL Performance Observations

• Interleaving delivers higher aggregate bandwidth with lower loaded latency

• Tiering enables flexibility to optimize local and CXL memory access

Question: How does this translate to application performance?

• Depends on the application and there’s a lot you can optimize

Tiering and Interleaving - Performance Comparison

CPU
CXL CXL

CPU
CXL CXL

Tiering Setup Interleaving Setup Performance Measurements

Data from Astera Labs and Intel
https://dl.acm.org/doi/10.1145/3669900

https://dl.acm.org/doi/10.1145/3669900


1. Application-managed 

• Application software can be modified to use two memory tiers

• CXL memory is separately visible to application as ZNUMA (zero core NUMA)

• Application knows latency sensitivity of different objects and places them accordingly

2. Software-managed 

• Application does not need to be modified

• SW while working with hot page tracker on CXL controller moves hot pages from CXL 
tier to local tier.

3. Hardware-managed 

• HW features that moves 64B cache lines from CXL to local memory: Flat memory mode

Tiered Memory Deployment Options



Case 1: Application-Managed Memory Tiering

• Application sees two memory tiers
• Application is modified to utilize two tiers
• Application is in control of data placement 

across two tiers
• Application can promote or demote data 

between these two tiers depending on hotness 
of data

Application

Software (OS, Hypervisor)

Hardware

Local Memory CXL Memory



Case 2: Software-Managed Memory Tiering

Application

Software (OS, Hypervisor)

Hardware

Local Memory CXL Memory

• Application sees single memory tier
• HW (hotness tracker inside CXL controller) tracks 

hot memory regions on a far CXL memory
• HW provides this information over software 

interface to OS or guest application
• OS is responsible for migrating hot pages from CXL 

memory to local memory
Hotness 
Tracker



Case 3: Hardware-Managed Memory Tiering

PowerPoint Presentation (hotchips.org)

HW managed tiering with Intel Flat Memory Mode
• Cache line granular movement
• Hot lines stay in lower latency memory

Application

Software (OS, Hypervisor)

Hardware

Local Memory CXL Memory

https://hc2023.hotchips.org/assets/program/conference/day1/Platforms/HC2023.Intel.Gianos.v7.pdf


Summary

• CXL provides cost-effective and performant solution to expand memory capacity

• CXL is ready for cloud-scale deployment with multiple deployment options

• Each tiering and interleaving mode have unique performance advantages

• Application-specific performance can be tuned through different tiering modes

Call to Action

• Consider all memory deployment options to optimize application-level performance

• Collaborate in OCP CMS group (e.g., hotness tracking, pooling/sharing, compression…)

• Visit Astera Labs Booth B13 to learn more

Call to Action



Thank you!

End


	Slide 1: Cloud-Scale Deployment with CXL Memory
	Slide 2: Cloud-Scale Deployment with CXL Memory
	Slide 3: Application-Specific Memory Requirements
	Slide 4: General Purpose Compute Architecture
	Slide 5: CXL Solution Requirements
	Slide 6: Holistic Cloud-Scale CXL Memory Solution
	Slide 7: Bandwidth and Latency Considerations
	Slide 8: How to Utilize CXL-Attached Memory
	Slide 9: Tiering and Interleaving - Performance Comparison
	Slide 10: Tiered Memory Deployment Options
	Slide 11: Case 1: Application-Managed Memory Tiering
	Slide 12: Case 2: Software-Managed Memory Tiering
	Slide 13: Case 3: Hardware-Managed Memory Tiering
	Slide 14: Call to Action
	Slide 15: Thank you!

