

Harnessing light to power new possibilities

Advantages of optical CXL for disaggregated compute architectures

Ron Swartzentruber Director of Engineering

Agenda

- Memory centric shift in the data center
- Al Large Language Model growth
- Need for optical CXL technology
- Case study: OPT inference benefits using optical CXL

Disaggregation is the Future for Datacenter

Traditional Datacenter

Disaggregated Datacenter

Al trends

- Al and Large Language Models will continue to grow and consume more compute
- Disaggregated memory architectures are required in order to continue to scale
- Optical interconnect is required to extend reach

Optical Interconnect Latency

CXL is the Predominant Standard for Disaggregation

Wide adoption from most major industry players

© Lightelligence, Inc.

Optical CXL is Required for Scaling

32 cables with diameter > 6mm (CAT8)

16 fibers with diameter of 0.125mm

Copper cable struggles to support CXL scaling beyond a few servers.

Optical CXL in the Datacenter

Compute Memory Banks

PhotowaveTM CXL over optics Low Latency, High Bandwidth, Data Center Reach

Case study: LLM Inference

Demo @ FMS booth #915

LLM Model List

Model	Weight Memory(float16)	KV-Cache per sample(float16)	Activation per sample(float16)	Context length
OPT-1.3B	2.4 GB	0.095 GB	0.002 GB	512
OPT-13B	23.921 GB	0.397 GB	0.005 GB	512
OPT-30B	55.803 GB	0.667 GB	0.007 GB	512
OPT-66B	122.375 GB	1.143 GB	0.009 GB	512
OPT-175B	325GB	2.285GB	0.012GB	512

Entire OPT-66B model fits within one 128GB CXL memory expander

KV-cache Size: data_type * dimension* num_layers* batch_size * Context_len * 2

e.g., for opt-1.3B, FP16 -> 2Bytes * 2048 * 24 * 1 * 512 * 2 = 100,663,296 Bytes

Activation Size: data_type * dimension * batch_size * Context_len

Results

OPT-66B model results	Disk (NVMe)	CXL Memory	System Memory	MemVerge 60:40 Policy
Decode Throughput (Tokens/s)	1.984	4.859	6.216	6.237
Decode Latency (s)	338.7	138.2	108.1	107.7

CXL Mem. Achieves ~2.4x
Higher Throughput than Disk

■ Average GPU-PCle-Transmit-Traffic:

CXL: 882MB/s, System Memory 857MB/s, Disk: 582MB/s, MemVerge: 493MB/s

Average GPU-PCIe-Receive-Traffic:

CXL: 2365MB/s, System Memory: 2609MB/s, Disk: 1887MB/s, MemVerge: 2173MB/s

PHOTOWAVETM OPTICAL CXL MEMORY EXPANDER

NEWS TEXT SUMMARIZATION

PHOTOWAVETM OPTICAL CXL MEMORY EXPANDER

PARAMETERS

RUN MODE: CXL

INFERENCE ENGINE: FLEXGEN

WEIGHTS: 122.375GB

KV CACHE: 109.688GB

Summary of Results

CXL memory offloading is efficient and beneficial

- LLM inference case study
- Allows use of lower cost memory

Similar performance compared to pure system memory

2.4x performance advantage compared to SSD/NVMe disk offloading

>1.92x TCO improvement using inexpensive GPUs at similar throughput

PhotowaveTM Form Factors

Product Suite Features

- CXL 2.0/PCle Gen5 x16
- Jitter reduction, SI cleanup
- Sideband signals over optics
- x8, x4 or x2 bifurcation

- End-to-end latency:
 - Card: <20ns + TOF
 - AOC: <1ns + TOF

Endnotes

Algorithm & Software

- LLM: OPT-66B
- Batch size = 24
- Context length = 512
- Output length = 8
- FlexGen

Hardware configuration

Super Micro Server

- AMD EPYC 9124 16-Core CPU
- Samsung DDR5 4800 MT/s
- MEM0 size: 256GB
- MEM1 size: 256GB
- Bandwidth: 307GB/s

Nvidia GPU

- Gen4x16, DMEM size: 24GB
- Bandwidth: 32GB/s

Samsung NVME

- Gen4x4, MEM size: 1.92TB
- Bandwidth: 8GB/s

Samsung CXL Memory

- Gen5x8, MEM size: 128GB
- Bandwidth: 32GB/s