Endless Memory

Endless Memory Team

Moderator

Eric Doyle Director, Channels & Alliances MemVerge

Big Memory Computing

Mike Hoey Director of Sales MemVerge

Big Memory Use Cases

Eddie Blanton Director, Solutions Enablement, SSG Penguin Computing

Stay until the end!

In search of the perfect analytics solution

Big Memory Technology

Mike Hoey Director of Sales MemVerge mike.hoey@memverge.com

Digital Transformation Driving Big & Fast Data

The Memory-Storage Dichotomy: A Fundamental Bottleneck

Apps Run in DRAM

Brass Tacks...Root Cause

Data transport overhead

Real-Life Pain Points by the Numbers

Financial Services

Databases

3hrs

How long it takes to recover a fraud, risk analysis, or payment cluster from storage. Data Sciences Multi-Stage Analytics

60%

Of multi-stage pipeline throughput is repetitive loading and execution from storage. Cloud Infrastructure Compute Instances

\$500K

Server overhead due to memory capacity limitations.

Re-architecting the Memory/Storage Hierarchy

Intel® Optane[™] Persistent Memory (PMem) fills the DRAM -> NAND gap

Introducing MemVerge®

Led by the creators of VSAN & XtremIO

Market share leaders and product lines with \$ billions in annual revenue.

Xtrem IO

Pioneering Big Memory Computing

Memory Machine[™] Big Memory without Compromises

Higher Performance

- Elimination of Storage I/O
- Solves Data-Greater-than-Memory (DGM) Problem

Lower Cost

- Higher Consolidation Ratio
- DRAM-like Performance @ 40% less cost

Enterprise-class features for HA & Productivity

- ZerolO[™] In-Memory Snapshot
- HA with AutoSave, Time Machine, Replication, and Instant Recovery
- Higher Productivity with IMDB and ML Cloning

No Application Changes needed !

Comparison of PMEM Deployment Modes

Memory Mode – single pool of volatile memory

Pros

- □ Higher VM density
- No application changes needed

Cons

- DRAM capacity will be hidden
- Total memory capacity = PMEM capacity only
- PMEM becomes volatile
- Multi-VM performance issues
- □ Fixed DRAM-to-PMEM ratio for all VM's

App Direct Mode – (2) distinct pools of memory

Pros

PMEM is persistent

Cons

- Cannot be used to extend VM's memory
- Application changes needed

intel

Why MemVerge's Memory Machine ? Big Memory without Compromises

Capability	Intel Memory Mode	Intel App Direct Mode	Memory Machine ™
Requires changes to app	No	Yes	No
100% Capacity Utilization (DRAM + PMEM)	No	Yes	Yes
Full Persistence in memory	No	Yes	Yes
Auto Tiering/Tuning	No	No	Yes
Modern memory allocator delivering DRAM-like performance for pool of DRAM + PMEM	No	No	Yes
High availability with local and cluster memory-to-memory snapshots and instant recovery	No	No	Yes
Higher IT and business productivity with cloning of IMDBs and ML stages, and on-prem/cloud snapshot mobility	No	No	Yes
Lower TCO no application rewrite, higher capacity utilization, and higher VM density / less servers with great performance	No	No	Yes

Java C++ App

Lower TCO by consolidating servers and memory

With DRAM DIMMs-Only

With Intel® Optane™ Persistent Memory and DRAM capacity @ 2:1

Increase Productivity¹ of Data-Intensive Jobs

CASE STUDY

BioTech

Increase Productivity of Data-Intensive Jobs

Reduce time to load data by 800x

Reduce execution time by up to 25x or 60% across all stages

1 Source – MemVerge. Intel does not control or audit third-party data. You should review this content, consult other sources, and confirm whether referenced data are accurate.

Case Study Bank

Increase Availability with ZerolO™ In-Memory Snapshots and Instant Recovery

ZerolO[™] Snapshot Coordinator

More memory → more instances per server and High Availability / fast recovery !

Case Study

Animation Studio

Increase Availability with ZerolO™ In-Memory Snapshots / Auto Save and Restore

Reduced downtime & recovery, reduced overtime, and higher quality of work !

Case Study

CSP

Lower TCO by Eliminating Noisy Neighbors to Increase VM Density

Intel Memory Mode

Memory Machine TM

Regained lost DRAM capacity, gained performance, and smoothed out Service Levels across VM's !

Big Memory is a Massive New Market

\$2.6B by 2023

Byte-Addressable Persistent Memory Revenue (\$M)

\$25B by 2030

Emerging Memories Shipments (PB)

The Future is Memory Centric !

Digital Transformation Driving New "Big Memory" Requirements

"Big Memory Computing"

- Enables the ability to run applications in memory for improved performance and efficiency
 - Leverages byte addressable memory media
- Includes enterprise-class data services to handle Tier-1 availability and management requirements
- Runs on a software-based memory virtualization layer on industry standard hardware without application modification
- The technology enabler for missioncritical real-time computing

Live Data

Eddie Blanton Director, Solutions Enablement, SSG Penguin Computing

LiveData - MemVerge Memory Machine

Data Practice

LiveData Big Memory

LiveData with Memory Machine addresses provides a memory virtualization software layer that delivers software-defined memory services to the applications without application changes.

Features

Tier PMEM and DRAM

Low-latency memory replication Virtualized platform for enterprise-class data services. Plug-compatible access with existing applications. Recover 100s of GBs in seconds with ZerolO[™] memory snapshots Clone databases in seconds

Benefits

Scale memory capacity and improve system performance.
Maintain availability - recover in seconds, not hours.
Enable agility with efficient clone deployment, and fast application rollbacks.
Avoid application disruption or rewrite.
Reduce latency.

LiveData - MemVerge

LiveData Platform - Relion XE1112e

Key Features

- 1U Form Factor
- Dual Intel Xeon Scalable Processor
- Up to 165W TDP with air cool
- Up to 1.5TB DDR4-2933MHz (12 x DIMM)
- Up to 6TB DDR4-2666MHz (12 x PMEM)
- 4 x 2.5" Hot Swappable SATA/SAS SSD
- 4 x 2.5" Hot Swappable SATA/SAS or NVMe SSD
- 1 x Dedicated BMC + 2x 10GBase-T
- 2 x PCle Gen3 (x16) LP
- 1 x PCIe Gen3 (x16) OCP Mezzanine 2.0

LiveData - MemVerge

LiveData - MemVerge

<u>32-Node Rack</u>

Memory

- Up to 48 TB DDR4 DRAM
- Up to 192 TB Intel Optane PMEM
- Up to 240 TB Total Memory

Compute

- Up to 1792 Intel Scalable Cores
- Up to 3.9GHz Base Clock Speed

Network

- Up to 800 GB/s 1:1 FBB
- Ethernet, InfiniBand, Omni-path

Power

- 27.6 kW Maximum
- 22.1 kW Nominal

LiveData - MemVerge

LiveData - MemVerge

40-Node Rack

Memory

- Up to 60 TB DDR4 DRAM
- Up to 240 TB Intel Optane PMEM
- Up to 300 TB Total Memory

Compute

- Up to 2240 Intel Scalable Cores
- Up to 3.9GHz Base Clock Speed

Network

- Up to 1000 GB/s 1:1 FBB
- InfiniBand

Power

- 34.0 kW Maximum
- 27.2 kW Nominal

Use Cases

LiveData - Real-Time Workloads

According to IDC, by 2021, 60-70% of the Global 2000 organizations will have at least one mission-critical real-time workload. Below are just a few examples of use cases that are implementing Big Memory now.

Real-Time Big Data Analytics in financial services, healthcare, retail, Federal Govt, and security.

Al/ML Analytics and Inferencing like fraud detection, image and video recognition, autonomous vehicles and healthcare.

Big Memory for Financial Services

LiveData Big Memory

Problem - IMDB Cluster takes 2 Hours to Restore

- Hazelcast in-memory database distributed across 40 servers.
- A cluster crash takes over 2 hours to completely restore
- Each server limited to 100GB of DRAM because scaling DRAM is extremely expensive
- Deploying lower cost PMEM sacrifices performance

Big Memory for Financial Services

Financial Services

LiveData Big Memory

Solution - IMDB Cluster Restored in Seconds

- MemVerge allows for Hazelcast cluster to be restored in seconds
- TCO PMEM provides nearly twice the memory for the same cost
- 10x Server Consolidation
- MemVerge memory allocator technology allows PMEM to go as fast or faster than DRAM

Big Memory for Financial Services

Big Memory for M&E

Media & Entertainment

LiveData Big Memory

Problem - 83,000 Hours of Creative Artist Time Lost Per Year

- "We need more RAM" is the top request from artists
- Creative artist time is the biggest cost item for any movie production!
- Creative artist's lose on average 1-2 hours of productivity per week
- 800 Artists x 1,600 hours per week = 83,200 hours per year

Big Memory for M&E

Media & Entertainment

LiveData Big Memory

Solution - Time Equivalent to 40 Creative Artists Restored

- Lower TCO: Workstations with double the Memory + MemVerge for the same cost or less
- "Autosave" improves productivity by potentially 40 Creative Engineers annually
- \$8M potential savings annually
- Higher quality movies & faster time to market

Big Memory for M&E

Big Memory for AI/ML Inferencing

Problem - Data Greater than Memory

- When data is greater than the size of DRAM, AI/ML performance slows down dramatically
- Memory-intensive inference jobs take a long time to load and restart

Big Memory for AI/ML Inferencing

AI/ML Inferencing

LiveData Big Memory

Solution - Big Memory Lake

- Create big memory lakes consisting of DRAM and PMEM to provide capacity needed for all data including models and embeddings
- Fast data recovery and restart by using inmemory data snapshot

Big Memory for AI/ML Inferencing

Try it in your lab or ours

Server w/PMem

Memory Machine Software

Big Memory Labs

Memory Machine™ For Big and Fast Data

Q & A

Contact Us

Penguin Computing

- Phone: 415-954-2800
- penguincomputing.com

MemVerge

- Phone: 408-823-3902
- <u>memverge.com</u>

Endless Memory

