
Author: Justin Warren

SPONSORED BY:

April 2021

PARALLEL PROCESSING WITH
PERSISTENT MEMORY CLONES



Parallel Processing with Persistent Memory Clones1

WP
Using MemVerge’s memory snapshots and clones 

allows parallel use of in-memory datasets in ways that 
are difficult, if not impossible, using traditional 
techniques.

Memory clones open up a range of interesting 
workload consolidation opportunities that provide 
substantial economic and efficiency benefits compared 
to more complex, distributed scaling methods. By 
sharing resources, workloads can use the same in-
memory dataset in parallel, quickly gaining access to the 
latest data from earlier processing stages.

Creative and exploratory work can benefit from 
working in parallel from in-memory clones of data. 
Performing what-if analysis from a common baseline 
allows exploration of different ideas from the same 
shared starting point.

By providing quick restore points for rapid recovery of 
large datasets, exploration of different creative pathways 
can be done with low risk. Novel ideas can be 
investigated with confidence that a misstep will not 
require hours of reconstructive work to return to a 
checkpoint. Program crashes no longer derail a team’s 
ability to move forward due to the failure of a single, 
critical link in the chain.

MULTI-TENANT MEMORY

Taking copies of the same in-memory program state 
and making them available to multiple people provides a 
level of parallelism that we are familiar with in other 
contexts, but have been unable to use with memory 
state. Until now.

Snapshots and clones of in-memory datasets permit 
virtualization of memory in a similar way to how 
VMware provides shared access to compute and storage 

infrastructure. Shared access to memory has, so far, been 
limited to traditional operating system virtual memory 
architectures that impose a heavy penalty if the active 
working set is very large.

inly-provisioned storage is possible partly due to 
the use of copy-on-write storage systems, and 
MemVerge’s Memory Machine architecture uses a 
similar approach to provide memory snapshots and 
clones. Just as VMware provided a compatibility layer 
between existing programs and physical infrastructure, 
MemVerge virtualizes physical DRAM and persistent 
memory to provide a large pool of memory resources in 
a way existing programs can easily consume.

Keeping data in memory makes fast access to even 
very large datasets possible. Programs can be brought to 
the data, rather than having to replicate datasets to 
where the programs are. Like the early days of VMware, 
this provides opportunities for workload consolidation 
to maximize the use of relatively expensive 
infrastructure.

Rather than purchasing DRAM for many nodes at 
great expense and using complex scale-out data 
processing methods, fewer, larger nodes can be used. 
Expensive DRAM can be augmented with relatively 
cheap PMEM to provide very large per-node memory 
pools. By using MemVerge’s Memory Machine 
approach, datasets can be reused with only changes 
consuming additional memory, increasing efficiency.

A single, primary dataset can be maintained as a kind 
of ‘golden image’ that is cloned for use by a range of 
workloads without requiring each workload to take a 
full copy of the original data. For poly-dense animation 
scenes or multi-terabyte analytics datasets, this can add 
up to substantial savings for read-heavy data access.

THE POWER OF
MEMORY CLONES



Parallel Processing with Persistent Memory Clones 2

WP
REPORTING AND ANALYSIS

Creating a reporting copy of a production database is a 
common design pattern where long-running, resource 
intensive reporting jobs could interfere with an online, 
transaction processing environment. e reporting copy 
provides a point-in-time clone of a dataset that is 
suitable for summary reporting that doesn’t need the 
very latest transactions to be useful.

is design pattern was particularly common in the 
pre-flash disk storage era, where contention for limited 
disk I/O could severely impact the performance of 
latency-sensitive applications. e challenge is still 
present in all-flash systems, though the more consistent 
latency and throughput of flash compared to spinning-
disk media has dramatically improved the situation.

However, for workloads that use very large in-memory 
datasets—such as AI/ML applications, animation, 
genomics, and other analytics workloads—the 
temporary pause in processing to flush a consistent copy 
of state to storage media can be unacceptable. Modern 
analytics datasets can be many terabytes in size, which 
take minutes to flush to storage even with very fast all-
flash storage arrays and high-bandwidth links. A multi-
minute pause in transaction processing is functionally 
equivalent to an outage for these systems, and regularly 

scheduled outages are rightly seen as a legacy approach 
from last century.

By using a snapshot of the memory state with 
something like MemVerge’s memory machine, the pause 
in activity can be reduced dramatically. A snapshot can 
be taken in less than a second, a small enough window 
that production activities aren’t impacted unduly. And 
as the snapshot data is contained in memory already, a 
clone can be created—still in memory—without 
waiting for data to load from relatively slow storage 
media. e clone can then be used for parallel activities 
while the original processing thread continues 
uninterrupted.

Refreshing the data is fast and straightforward, 
removing the overhead of long flush and reload cycles. 
is can speed up end-to-end processing where multiple 
stages arranged in series are required, but the parallel 
processing potential is what makes in-memory dataset 
clones particularly interesting.

Like VMware, the benefits of soware-defined-
infastructure extend into new services enabled by 
virtualization. Co-locating processing of large in-
memory datasets unlocks a host of new data processing 
approaches that are API-driven and highly automated.



Parallel Processing with Persistent Memory Clones3

WP

1For example, the Mouse Cell Atlas (GSE108097)

GENOMIC SEQUENCING AND 
ANALYTICS

Single Cell RNA (scRNA) sequencing analysis uses a 
computational model with large datasets, and a multi-
stage pipeline with multiple intermediate stages. As the 
data is analyzed, branching off these intermediate stages 
is used to perform what-if analyses.

Due to the size of the datasets1, flushing the memory 
state to disk and then re-importing the data from files 
back into memory for processing can take over 15 
minutes for each stage. is affects the design of the 
pipeline stages and the types of analysis that can be 
undertaken.

In one MemVerge customer, an 11 stage pipeline was 
only able to complete an average of three analysis tasks 
per hour due to I/O overheads of saving and restoring 
memory state consuming 61% of task completion time. 
By using in-memory snapshots, I/O overhead was 
reduced to a mere 3% of task time and the customer was 
able to move to a multi-branch pipeline where multiple 

branches of analysis could be performed in parallel.

KEEPING ANIMATION MOVING

Polygon dense scenes in industry standard 
applications like Autodesk Maya 3D graphics soware 
can take minutes to save and load with even fast flash 
storage. Minutes-long save times discourage artists from 
saving their work regularly, even though a crash can 
mean half a day of rework will be needed.

e collaborative nature of artistic work means that 
one crash and the resultant delay can mean dozens of 
other artists are also delayed waiting on the work to be 
redone. Production timelines are oen tight, and even a 
half day delay could cost a major production more than 
the cost of a few persistent memory DIMMs.

A memory snapshot that completes in under a second 
removes the disincentive for artists to regularly 
checkpoint their work, and keeps the entire system 
moving.

By rapidly restoring from 
snapshots, artists can drop back into 
a full Maya session exactly 
configured to where they le off. 
ey can test ideas, safe in the 
knowledge that abandoning 
something that didn’t work won’t 
result in waiting an hour for a scene 
to load back in from storage.

Multiple artists can work in 
parallel from the same baseline 
snapshot, trying out alternatives 
before deciding on a final approach 
to take. Instead of hampering their 

Parallel task execution in substages using memory clones.



Parallel Processing with Persistent Memory Clones 4

WP
creative efforts, fast snapshots can help them to take 
creative risks without endangering production 
deadlines, resulting in a higher quality end result.

DEVELOPMENT AND DEBUGGING

Live memory clones are very useful for soware 
developers hunting for tricky bugs, particularly the kind 
of bugs that emerge at runtime in complex systems.

Running in production with full debug enabled has 
unacceptable performance implications, and there are 
also dangers in turning on live instrumentation of a 
running production system. 
Monitoring systems such as 
distributed tracing are also limited to 
systems that have implemented 
tracing extensively throughout the 
code, and have appropriate processes 
for using the data.

When things go wrong, there’s 
nothing quite like being able to see 
the broken system in its natural 
environment.

Taking a copy of the program while 
it is experiencing a problem means it 
can be examined carefully, either in 
situ on the production infrastructure 
or in a safer, non-production environment in order to 
locate the source of the problem without endangering 
the running program or any production data. Taking 
copies of the running, production state can allow 
multiple people to all look at the same system in 
parallel, altering its state as they investigate their own 
hypotheses.

Some bugs don’t manifest until aer substantial 
runtime, such as certain kinds of memory leaks or 
interactions with other long-running components. Until 
the cause is located, it can be difficult to replicate the 

conditions leading to the bug. By taking a snapshot of 
the running program aer it has reached the error 
condition, it can be examined, potentially repeatedly, 
without requiring a restart and warmup time for each 
test run.

Again, multiple developers can all access clones of the 
same primary memory snapshot and start from the same 
point, exploring on their own in parallel to one another. 
Just as storage snapshots provide rapid access to baseline 
datasets, memory snapshots can provide rapid access to 
large in-memory datasets without incurring a setup 
penalty.

is technique isn’t limited to production systems. 
Forensic analysis of running programs during 
development can quickly resolve issues that take much 
longer to find and fix using more traditional debugging 
techniques. Intermittent errors, rare dependency 
conditions, or challenging asynchronous code can all 
benefit from live inspection rather than painstakingly 
searching for just the right breakpoints or error logging 
to finally locate the errant line of code. is can be 
particularly beneficial when combined with a reduction 
in load time for large datasets using memory snapshots 
instead of loading from storage.

When things go wrong, 
there's nothing quite 
like being able to see 
the broken system in 
its natural environment.

“

”



Parallel Processing with Persistent Memory Clones5

WP
SECURITY FORENSICS

e ability to snapshot and clone live memory state 
provides some intriguing possibilities for security 
forensics.

Security researchers make extensive use of virtual 
machine sandboxes to safely isolate dangerous code, so 
they are already familiar with the snapshot and cloning 
process. However, the lengthy time it takes to stun and 
store a virtual machine image can make exploratory 
work tedious and difficult. Resetting a virtual machine 
environment to a known state before injecting malware 
for analysis increases cycle times substantially.

A live process snapshot that can be cloned, or copied 
to another machine, and restored to its original state 
time and time again could allow detailed state 
examination that isn’t possible or straightforward with 
existing tools. Providing multiple researchers and 
analysts parallel access to the same live malware sample 

will accelerate analysis. When coupled with the fast-
restart feature of memory snapshots, iterative analysis on 
live program state becomes a feasible and vastly less 
tedious approach than the relatively slow process of 
restoring virtual machine state from storage.

Memory snapshots can be taken of both malware 
processes and entire virtual machines, depending on the 
granularity that is required, and with little to no impact 
on snapshot and restore times thanks to the copy-on-
write architecture of MemVerge’s memory machine.

While it is difficult to predict what new techniques 
will be developed, we are keen to see what the creative 
and non-linear minds of information security come up 
with.



Parallel Processing with Persistent Memory Clones 6

WP
CONCLUSION

Memory snapshots provide a handy hybrid of familiar 
techniques and intriguing new ones.

We can use the knowledge we’ve already accumulated 
from decades of experience with storage snapshots and 
clones to make immediate use of memory snapshots in 
clearly beneficial ways. Rapid restore points for large 
datasets that can be easily cloned and worked on in 
parallel is a well-known technique with clearly 
understood benefits. For certain workloads, and at the 
right price-point, a memory-speed version of storage 
snapshots is trivially easy to justify.

What we find most exciting about memory snapshots 
is the potential for new techniques that have not yet 
been developed.

Completely new ideas are difficult to grapple with. 
ey tend to require such a radical rethink of how we 

work that it’s hard to know where to begin… and so we 
don’t. Memory snapshots provide a helpful bridge 
between what we already know and the beguiling 
possibilities of the unknown. We are not required to 
leap into the void without a safety net to catch us if 
something we try doesn’t work out.

is buys us time. Time to gain familiarity with how 
memory snapshots work, and how they are both similar 
and different to what we already know. at time isn’t 
wasted, because we know we’ll be making things better 
from the outset.

What we don’t know is how memory snapshots might 
allow us to make radical, more fundamental changes to 
how we work. Teleporting a process from one node in a 
cluster to another node, complete with all of its memory 
state, isn’t something we really do today. e ability to 
try it out might give rise to entirely new ways of 
managing cluster rebuilds or autoscaling.



Parallel Processing with Persistent Memory Clones7

PN
ABOUT THE AUTHOR

Justin Warren is Founder and Chief Analyst of 
PivotNine. He has worked with many well-known 
companies around the world, including ANZ, Australia 
Post, IBM, NetApp, Nutanix, Pure Storage, Red Hat, 
Suncorp, Telstra, and VMware as well as a variety of 
startups including Atomist, CodeSee, Cloudistics, 
Datera, Elastifile, Env0, Habrdata, Hasura, Illumio, 
Isovalent, Manifold, Mattermost, Smallstep, Spectro 
Cloud, and Solo.io, among others.

Justin has written for a variety of mastheads, including 
Forbes.com, iTnews, CRN Australia and e Saturday 
Paper.

Justin holds an MBA from Melbourne Business 
School, and is a graduate member of the Australian 
Institute of Company Directors.

ABOUT PIVOTNINE

PivotNine Pty Ltd is a specialist IT consulting firm 
based in Melbourne, Australia.

PivotNine helps customers to evaluate and select 
technology products, and to implement effective 
organisational structures and processes.

PivotNine assists vendors with marketing positioning 
and messaging, with a focus on data driven marketing 
methods.

https://pivotnine.com

enquiries@pivotnine.com

CONTACT

https://pivotnine.com
mailto:enquiries@pivotnine.com


Reproduction and distribution of this document in any form without prior written permission is prohibited. e information in this document is from sources believed to be reliable. PivotNine disclaims all warranties as to 
the accuracy, completeness, or adequacy of such information. If any legal issues are discussed in this document, let’s be clear that it’s not legal advice; PivotNine is not a law firm, and we make no claims that we provide 
anything even resembling legal advice, so if you want actual legal advice, go and hire a lawyer. PivotNine is not a financial adviser. You should consider seeking independent legal, financial, taxation or other advice to check how 
information in this document relates to your unique circumstances. PivotNine shall have no liability for errors, omissions, or inadequacies in the information contained in this document. PivotNine is not liable for any loss 
caused, whether due to negligence or otherwise arising from the use of, or reliance on, the information provided directly or indirectly in this document. Do not tumble dry. is document may, or may not, set fire to your 
datacentre. e opinions expressed in this document were made at a particular point in time based on information available at that time, and we reserve the right to change our minds as new information comes to hand. If you 
actually bothered to read this far, send us a note at ilovelegalese@pivotnine.com. PivotNine and the Circular Device are trademarks of PivotNine Pty Ltd. All other trademarks are the property of their respective owners.

Copyright © 2021 PivotNine Pty Ltd. All Rights Reserved


