

Big Memory for Financial Services

Learn about Big Memory

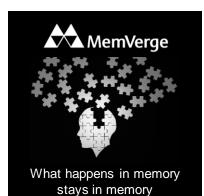
Time	Торіс	Presenter	
12:00 – 12:05	Introductions	Andrew Degnan	
12:05 – 12:25	:25 Optane Persistent Memory Mark DeMarseille		
12:25 – 12:45	Big Memory	Charles Fan	
12:45 – 12:55	Q&A	Andrew, Mark & Charles	
12:55 – 01:00	Wrap-up & Raffle	Andrew Degnan	

Tech Talk Hosts

Andrew Degnan VP Sales MemVerge

Mark DeMarseilles Technical Sales Intel

Charles Fan CEO MemVerge



Have Some Fun on Draft Day

Attend the entire Tech Talk and you get a MemVerge "What happens in memory stays in memory" t-shirt.

Fill out your Top 10 picks in our mock draft. The person or people that best match the actual Top 10 picks win an NFL jersey of their choice.

Every attendee is automatically registered for the raffle. If you stay for the entire Tech Talk you might win a jersey of your choice.

https://bit.ly/memverge

MemVerge Mock Draft

Mock Draft

For each selection 1-10, pick from the choices provided, or submit a name in the "other" box.

♣

7. #1 Pick - Cincinnati Bengals

#2 Pick - Washington Redskins

9. #3 Pick - Detroit Lions

MemVerge (intel

(intel) HEL® OPTANE™ DC PERSISTENT MEMORY REVOLUTIONIZING MEMORY

Mark DeMarseilles Intel Optane Persistent Memory Technical Specialist

CLOUDIFICATION EXPANSION AND SCALE TO THE POINT OF USE

Deliver new services faster to handle the deluge of data

deliver operational efficiencies

Deliver secure infrastructure to protect data privacy

ENTERPRISE

CEARAGE BACKER B

> OF WORLD'S DATA WAS CREATED IN THE PAST TWO AND ONLY 200

> > IS BEING USED

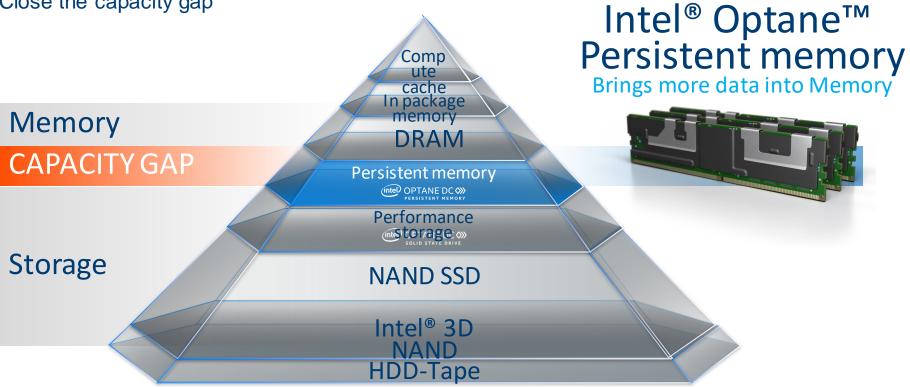
Source: https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read

INTEL DATA CENTER GROUP MOVE | STORE | PROCESS

INTRODUCING INTEL[®] OPTANE[™] DC PERSISTENT MEMORY

FAST MEMORY

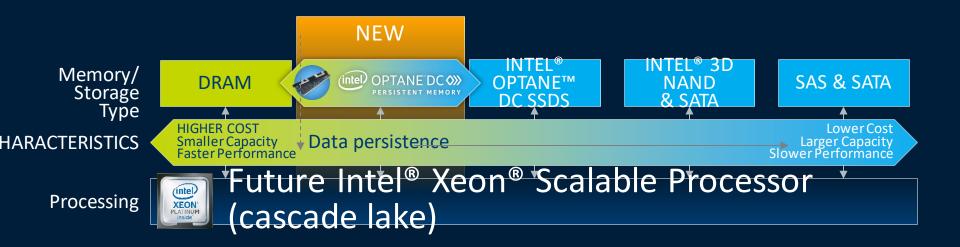
Enhance data insights by Redefining the Memory and Storage Hierarchy SIZE AND DATA PERSISTENCE OF STORAGE


Cher

Supported on 2nd Generation Intel[®] Xeon[®] Scalable Processors Platinum and Gold SKU

Delivering to the Needs of Growing Data

Close the capacity gap


Big and Affordable Memory 128, 256, 512GB Modules DDR4 pin compatible

Byte Addressable Direct load/store access

High Performance Storage Native persistence

High Reliability and Security Two Operational Modes

REDEFINING THE MEMORY AND STORAGE HIERARCHY

FAST MEMORY, PERSISTENCE OF STORAGE. FLEXIBLE AND SCALABLE TO ACCELERATE YOUR DATA INSIGHTS.

Providing value on multiple vectors

→Customer Pain Points←

DDR4 is too	Scale up is	Not enough	Operational	Workload	Storage is
expensive	expensive	capacity	inefficiencies	performance	too slow

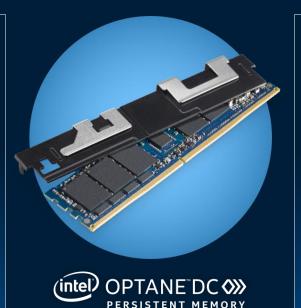
USE INTEL [®] OPTANE[™] DC PERSISTENT MEMORY TO...

SAVE MORE		DO MORE		GO FASTER	
DRAM-ONLY ALTERNATIVE	HELP IMPROVE TCO	INCREASE MEMORY SIZE	CONSOLIDATE WORKLOADS	BREAK THE IO BOTTLENECKS	ADD HIGH SPEED STORAGE
128 GB DDR4 compared to 128 GB DCPMM152 VMs190 VMS25% mode256GB DDR4 compared to 256GB DCPMM768GB DDR4192GB DDR4 1TB DCPMM33% Mode		DDR4 DCPMM 33% More 18% Lower	DCPMM 180-340 nanc NAND 100 micro sec	·	

What Problems Does Persistent Memory Address? Problems

DRAM too costly	Scale up too expensive	Not enough capacity	Operational inefficiencies	Poor workload performance	Storage too slow
Use INTEL [®] OPTANE [™] DC persistent memory for					
S Cost savings		i productivity		■ performance	
DRAM	Improve TCO	Increase Memory Size	Consolidate Workloads	Break I/O Bottlenecks	Add High- Speed Storage
Servers greater than 512GB	Workloads that need large or persistent memory	Large memory or software license fees per core	High VMs, with Iow CPU utilization	High disk I/O traffic	Tiered storage subsystem

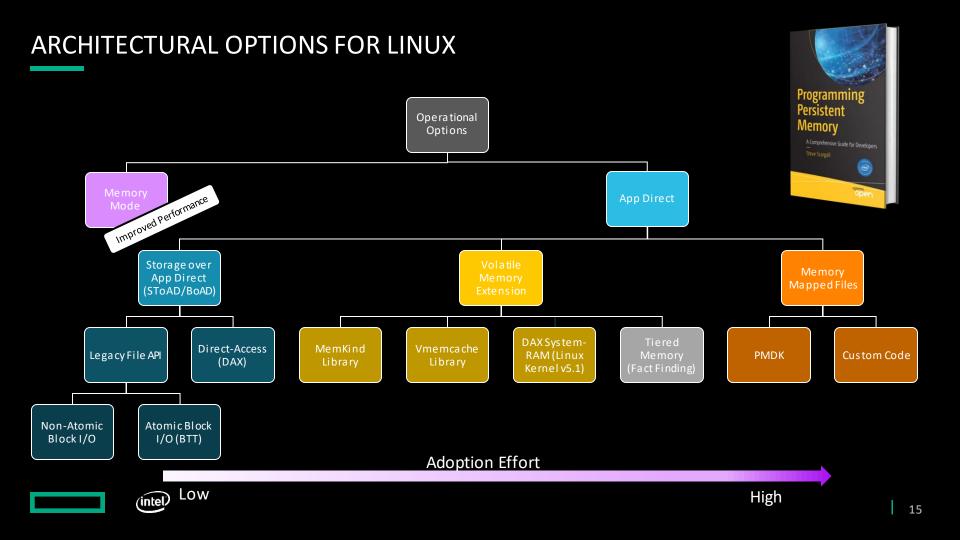
OPERATING MODES

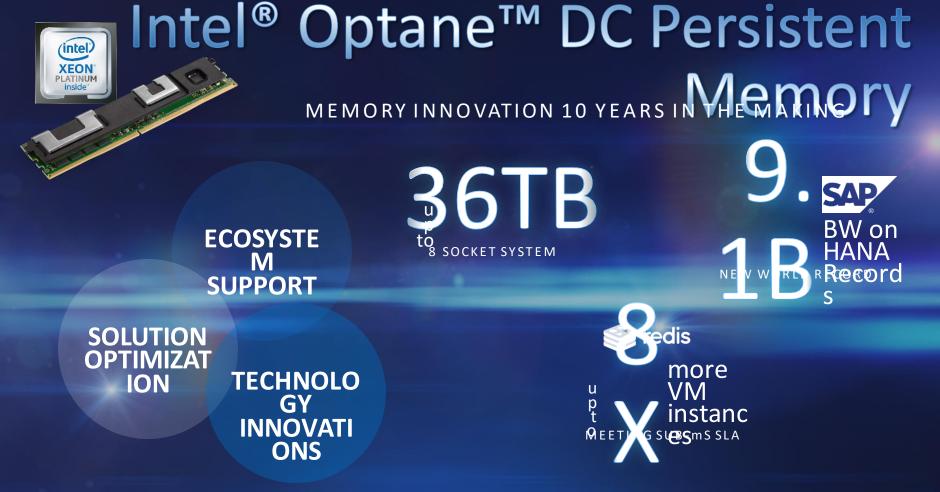


High availability/ less downtime

Significantly faster storage

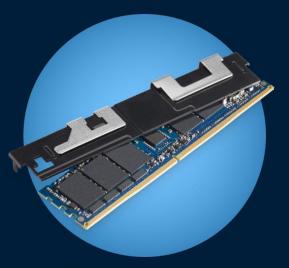
Affordable capacity 128GB, 256GB and 512GB Modules




Ease of adoption No code changes required

BUILT-IN FLEXIBILITY TO USE BOTH MODES SIMULTANEOUSLY

¹Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.


Performance results are based on testing: 8X (2/19/2019), and may not reflect all publicly available security updates. No product can be absolutely secure. See configuration disclosure for details. Software and workbads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/benchmarks.

#data-centric

LEARN MORE AT

intel.com/optanedcpersist entmemory

Supported on future Intel[®] Xeon[®] Scalable Processors Platinum and Gold SKUs

XEON

Big Memory for Financial Services

Charles Fan CEO MemVerge

Introducing MemVerge

Founded by:

Shuki Bruck

XtremIO co-founder and Caltech professor

Charles Fan

VMware storage BU leader and creator of VSAN

Yue Li

Caltech post-doc and top researcher on non-volatile memory

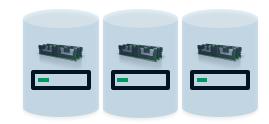
World-class team in Silicon Valley assembled from:

Our BIG MEMORY vision All applications live in memory

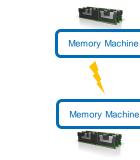
 \rightarrow MemVerge

Our mission Open the door to Big Memory

A world of abundance, persistence and high availability


(intel) HEL® OPTANE™ DC PERSISTENT MEMORY REVOLUTIONIZING MEMORY

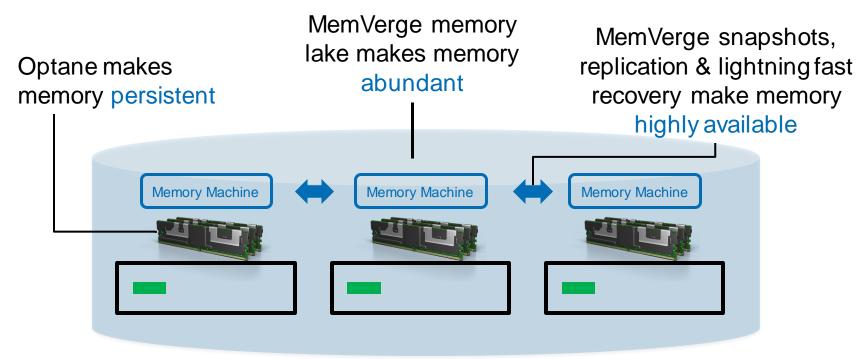
Not plug-and-play App rewrite needed Can't share memory Siloed in servers No Data Services Crash recovery is slow


MemVerge Memory Machine™

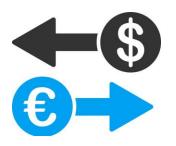
Software Subscription

Virtualizes DRAM & PMEM Low Latency PMEM over RDMA

Plug Compatible No re-writes


Memory Data Services Snapshot, Replication, Tiering

Big Memory = Optane + Memory Machine



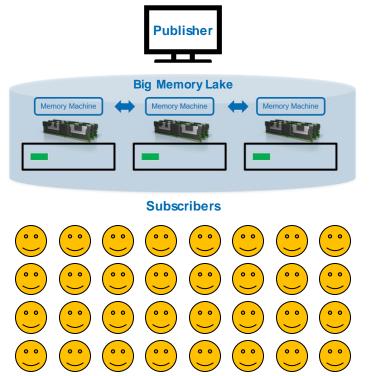
Financial Services are Killer Apps for Big Memory

Microseconds matter In-Memory databases used

Data > memory More capacity needed

Growing blast zone Memory data services needed

Memory Machine Use Case #1

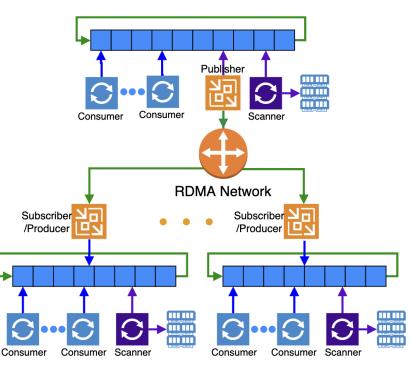

Real Time Market Data Pub/Sub

Objectives

MemVerge

(intel

- Market data event stream published to multiple subscribers with the lowest latency
- 2. Achieve fairness between the subscriber processes
- 3. Persist the event stream without incurring significant performance penalties



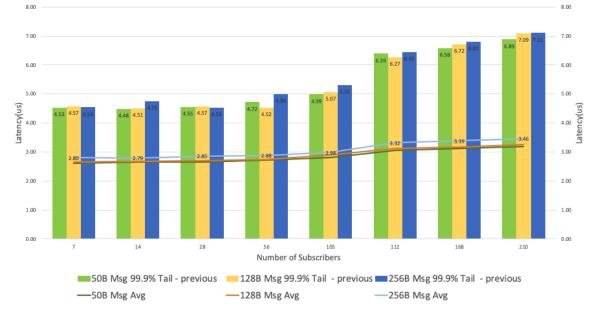
30

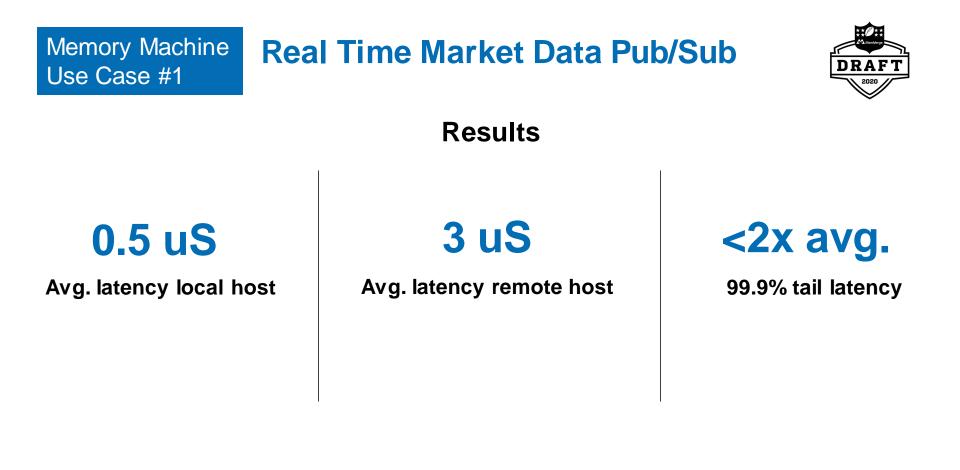
Use Case #1 Solution

Memory Machine

- 1. Memory Machine[™] software writes market data event stream to an in-memory bus
- 2. Background process commits the event stream to Persistent Memory synchronously or asynchronously
- 3. The event stream is replicated over RDMA to memory of other servers
- 4. Subscriber processes across all servers read the event stream with low latency

Real Time Market Data Pub/Sub



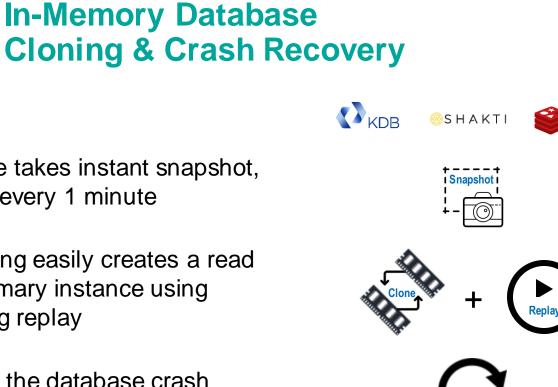

Results with 210 Subscribers

mv_pubsub 1 to 7 Node 100k/s Performance

RDMA over Ethernet, 1GB DRAM buffer, 600GB PMEM buffer, 180s run

In-Memory Database Cloning & Crash Recovery

Problem


Use Case #2

Memory Machine

- 1. Need to run analytics, reporting or dev/test but concerned about taking performance hit on Primary instance
- 2. Application takes a long time to restart after crash or planned shutdown

Solution

MemVerge

Memory Machine

Use Case #2

- 1. Memory Machine takes instant snapshot, as frequently as every 1 minute
- 2. In-Memory Cloning easily creates a read replica of the primary instance using snapshot plus log replay
- 3. Fast restart from the database crash using snapshot plus log replay

redis

Every Minute

Fine grained Snapshots

Fast

Results

Clone and Crash Recovery

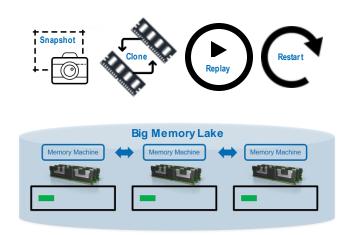
Zero

Performance hit

Memory Machine Big Memory Al/ML Inference Use Case #3

Problem

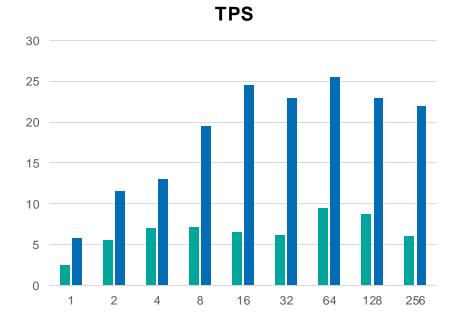
- When data is greater than the size of DRAM, AI/ML performance slows down dramatically
- 2. Memory-intensive inference jobs take a long time to load and restart

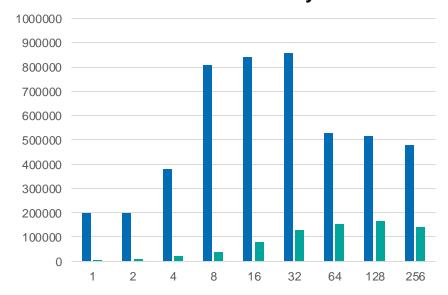

Big Memory AI/ML Training and Memory Machine Inference

Solution

Use Case #3

- 1. Create big memory lakes consisting of DRAM and PMEM to provide capacity needed for all data including models and embeddings
- 2. Fast data recovery and restart by using in-memory data snapshot




Memory MachineBig Memory Al/ML Training andUse Case #3Inference

Test results: 1000 libs (1 million records) case

Data access latency

Results

Up to 4x

Transactions per second

Up to 100x

Lower latency

50%


Cost savings vs DRAM

MemVerge Vision for Big Memory Industry

By 2025...

- 1. Persistent Memory will be mainstream and data Infrastructure will be memory-centric.
- 2. Big Memory, consisting of PMEM and DRAM, will achieve petabytescale over clusters of servers interconnected by next-gen memory fabrics
- 3. Big Memory software will be needed to offer data services in memory, and every application will be run in-memory.

MemVerge Vision for Big Memory Industry

What happens in memory stays in memory...

Thank-you

Try it Contract Andrew to sign-up for a PoC

Learn more about Optane Persistent Memory at www.intel/optane MemVerge at www.memverge.com

Contact:

mark.demarseilles@intel.com andrew.degnan@memverge.com

https://www.apress.com/us/book/9781484249314

Raffle Winner

