

Opening the Door for Big Memory

Presentation Team

Eric Burgener

VP

Kristie Mann Sr. Director Intel

Charles Fan CEO MemVerge

Brett Roscoe VP NetApp Kevin Tubbs Sr. VP Penguin Computing

bbs Darrell Westbury Sr. Director puting Credit Suisse

Time	Торіс	Presenter		
9:00 - 9:05	Introductions	Joe Barnes, MemVerge		
9:05 – 9:15	New "Big Memory" Category	Eric Burgener, IDC		
9:15 – 9:25	Re-Architecting The Data Landscape	Kristie Mann, Intel		
9:25 – 9:35	Big Memory Software: Memory Machine	Charles Fan, MemVerge		
9:35 – 9:45	Why MemVerge?	Brett Roscoe, NetApp		
9:45 – 9:55	Big Memory: A Case Study	Kevin Tubbs, Penguin Computing		
9:55 – 10:05	Customer PoV: Where Big Memory Fits	Darrell Westbury, Credit Suisse		
10:05 – 10:15	Q&A	Joe Barnes, MemVerge		

Digital Transformation Driving New "Big Memory" Requirements Eric Burgener, Research Vice President Infrastructure Systems, Platforms and Technologies Group May 2020

What Is Digital Transformation (DX)?

ANALYZE

The digitization of business models, processes, products and services

Sets enterprises up to optimally take advantage of big data analytics

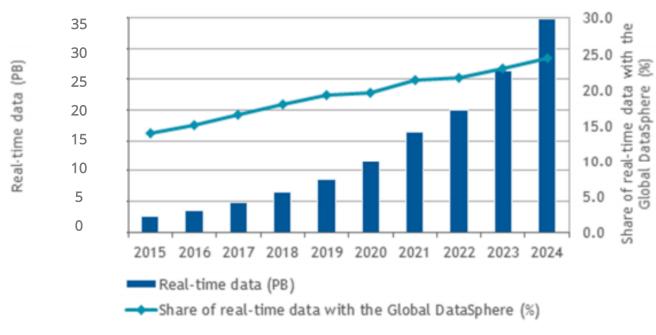
Digital Transformation is Widespread

DX Maturity Distribution

IDC MaturityScape Benchmark: Future Enterprise – Maturity Distribution Across the Stages

91.1% of enterprises undergoing DX in the next three years

More data-centric business models will drive AI/ML-infused analytics


Performance and availability implications for enterprise storage

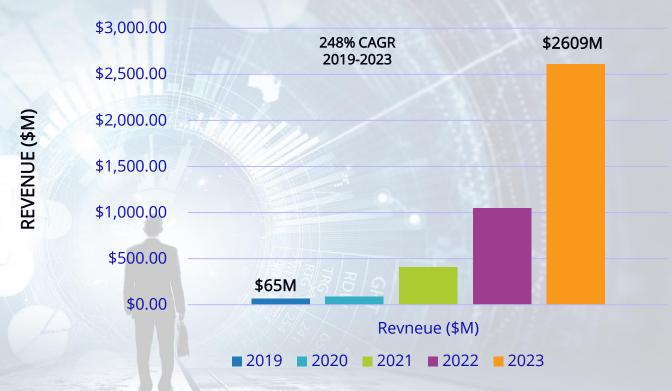
Market evolution will drive demand for persistent memory technologies

Source: IDC, 2020

Real-Time Workloads Are On The Rise

Worldwide Real-Time Data and Share, 2015-2024

Worldwide, data is growing at a 26.0% CAGR, and in 2024 there will be 143 zettabytes of data created


By 2021, 60-70% of the Global 2000 will have at least one missioncritical real-time workload

Source: IDC's Global Datasphere, 2020

ANALYZE

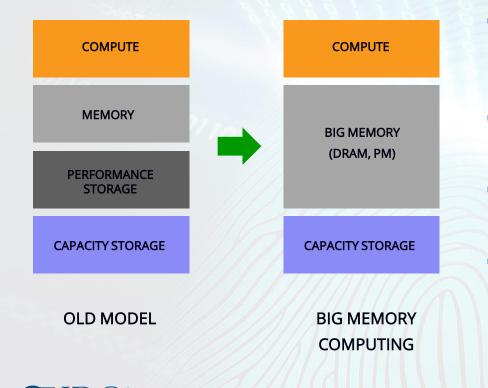
PM Revenue Forecast, 2019 - 2023

ANALYZE THE FUTURE

t I

Business Drivers

MARKET EVOLUTION TO REAL-TIME

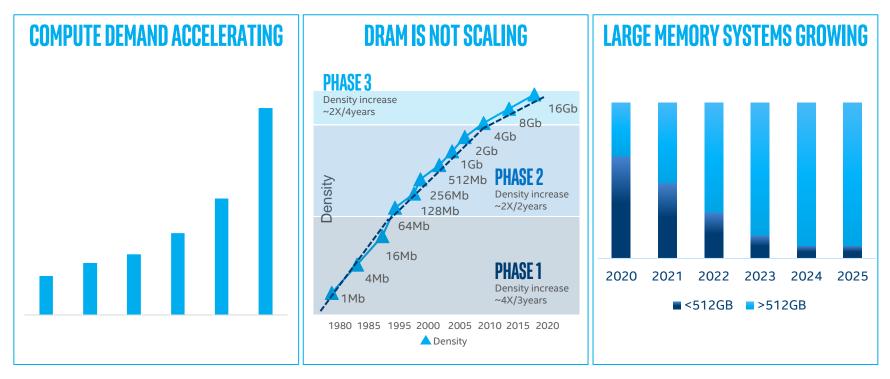

CONFLUENCE OF AVAILABLE TECHNOLOGIES

TARGET WORKLOADS

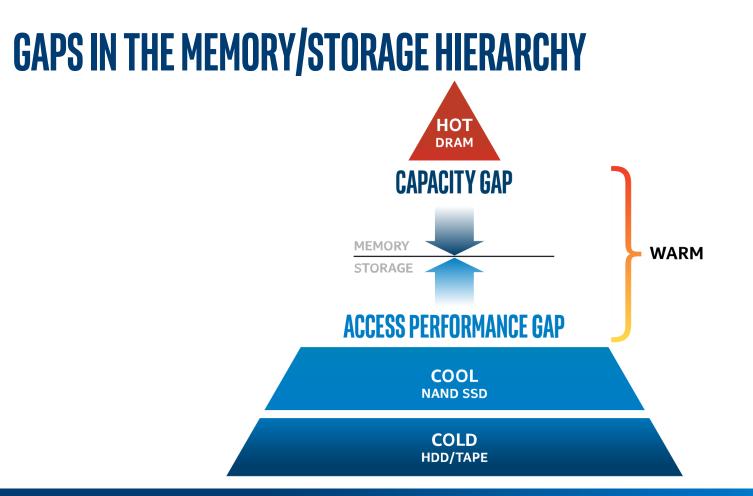
- Upping the ante: massive data sets, real-time orientation
- For accelerated computing, storage is still the bottleneck
- Value propositions include competitive differentiation, increased revenue
- Artificial intelligence and machine learning
- More concentrated compute power than ever before
- Emerging persistent memory technologies
- Memory virtualization with intelligent data placement
- Latency-sensitive transactional workloads (trading floor apps, etc.)
- Real-time big data analytics in financial services, healthcare, retail, etc.
- AI/ML analytics and inferencing (fraud analytics, social media, etc.)

Defining "Big Memory Computing"

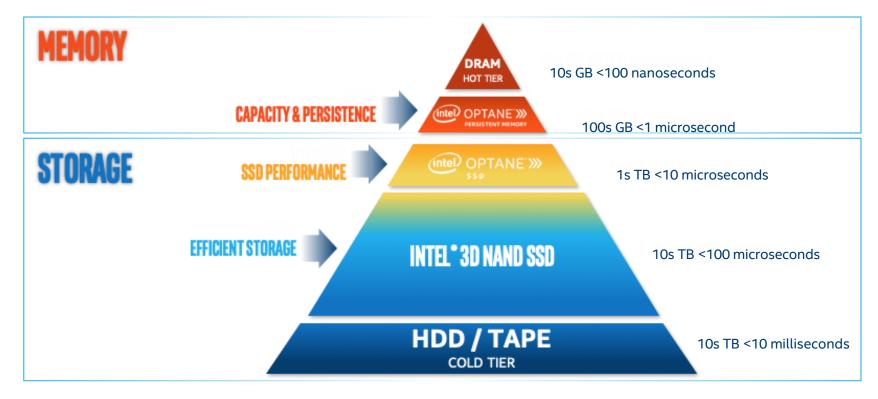
- Enables the ability to run applications in memory for improved performance and efficiency
 - Leverages byte addressable memory media
- Includes enterprise-class data services to handle tier 1 availability and management requirements
- Runs on a software-based memory virtualization layer on industry standard hardware without application modification
- The technology enabler for mission-critical realtime computing


10

RE-ARCHITECTING THE DATA LANDSCAPE Kristie Mann


Sr. Director of Products

ADAPTING TO THE CHANGING DATA LANDSCAPE


Source: Intel estimates; "3D NAND Technology – Implications for Enterprise Storage Applications" by J.Yoon (IBM), 2015 Flash Memory Summit; "DRAM Market Monitor Q1-20" by Yole Development

THE BEST OF MEMORY AND STORAGE WITH PERSISTENT MEMORY

INTEL® OPTANE™ PERSISTENT MEMORY IS UNIQUE

REVOLUTIONARY MATERIAL

Most significant memory and storage advancement in the last 20 years

WRITE IN PLACE

Set or reset data as needed, **no need to erase media**

BYTE ADDRESSABLE

Every memory cell can be **individually addressed**

LOW LATENCY

...together delivering remarkably fast media

THE BEST OF MEMORY AND STORAGE

THE OPPORTUNITY IS IMMENSE

HCI Compute YET TO BE DISCOVERED

SPEED TIME-TO-VALUE AND INSIGHT FOR DATA-INTENSIVE WORKLOADS

SOFTWARE OPTIMIZATION DRIVES VALUE FOR CUSTOMERS

OPTIMIZED SOFTWARE - SO YOU DON'T HAVE TO

- Virtualized pools of memory
- Byte-addressable persistence without code changes
- Data Services for High Availability and Durability
- Super-charged performance and flexibility in memory

Big Memory Software: Memory Machine

Charles Fan

MemVerge

What We Announced on May 12

- New Big Memory Computing category
- New round of \$19M investment led by Intel Capital, joined by Cisco Investments, NetApp and SK hynix
- ➤ Memory Machine[™] software available via Early Access Program

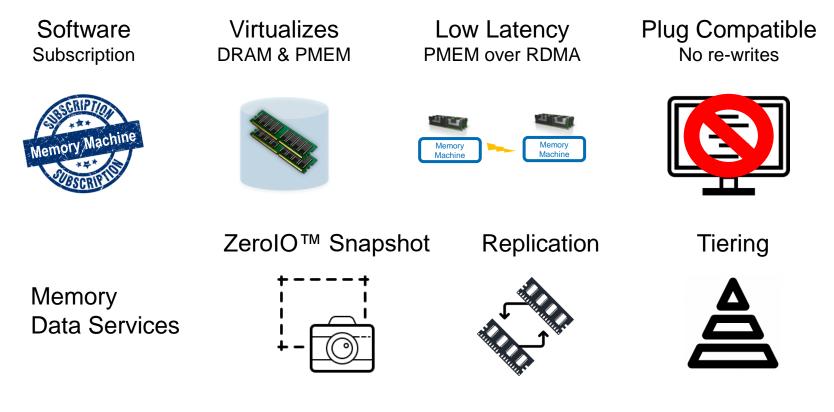
Our BIG MEMORY vision All applications live in memory

 \rightarrow MemVerge

INTEL[®] OPTANE[™] DC PERSISTENT MEMORY REVOLUTIONIZING MEMORY

Bringing Mission Critical Apps to Big Memory

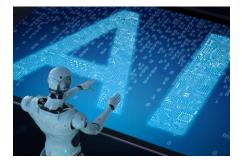
Plug-and-play No App rewrite needed Data Services Quick crash recovery



Scale Memory Beyond a single server

Memory Machine	Memory Machine	Memory Machine
J'UT		
_		

MemVerge Memory Machine™



MemVerge

Uses Cases: Real-Time Workloads

According to IDC, by 2021, 60-70% of the Global 2000 organizations will have at least one mission-critical realtime workload. Below are just a few examples of use cases that are implementing Big Memory now.

Latency-sensitive transactional workloads such as trading applications

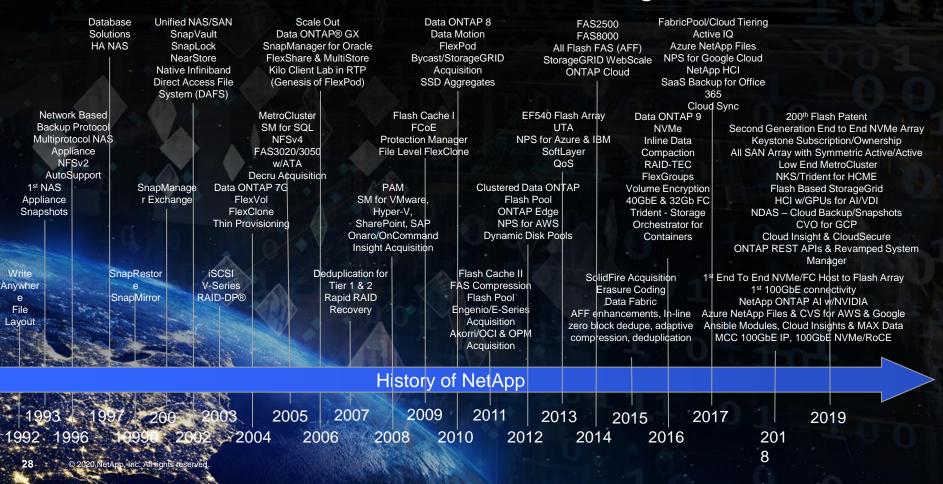
Real-time big data analytics in financial services, healthcare, and retail Al/ML analytics and inferencing like fraud detection and social media

Our mission Open the door to Big Memory

A world of abundance, persistence and high availability

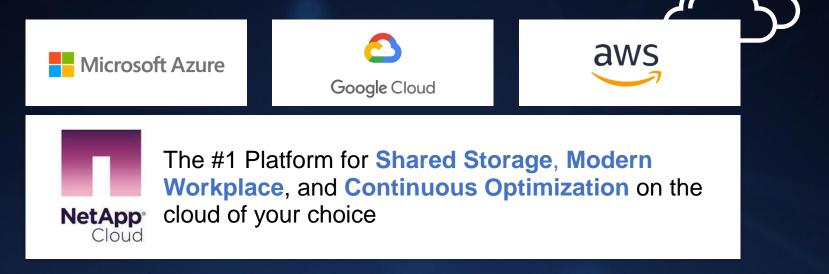
NetApp

NetApp and MemVerge:


Continued innovation to accelerate business

Brett Roscoe Vice President of Product Management, HCI

May 19, 2020


Over 27 Years of Customer-Focused RELENTLESS INNOVATION

27 Years of Customer-Focused Storage Innovation

NetApp's Innovation Continues into the Public Clouds

Only NetApp provides a cloud native shared storage experience on the cloud of your choice

NetApp

- #1 Platform for SAP Hana with >200 deployments on Azure and Google Cloud Platform
- #1 platform for WVD Enterprise (deployments >200 users)
- #1 platform for High Performance Compute
- Azure NetApp Files (ANF) is faster than block based premium SSD's

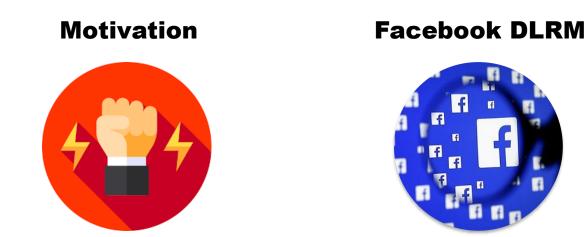
NetApp and MemVerge: Continuing our history of innovation

The next evolution in innovation in application and data acceleration

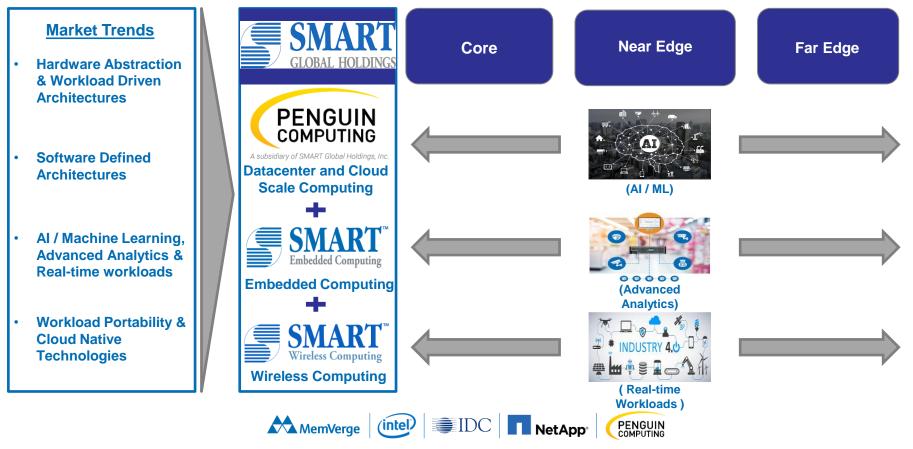
INNOVATION

- NetApp has a long-term industry view
- We constantly leverage in-house and industry innovations to accelerate the data we manage and the businesses it drives
- The market and competitive transitions are accelerating with COVID-19
- NetApp has been working to accelerate applications that are data centric including AI and machine learning
- Near zero latency will drive another round of innovation in data centric applications
- MemVerge is bringing lightning-fast, in-memory support of tier 1 applications that promises to deliver another disruption in performance and capabilities

NetApp


Big Memory: Case Study

Kevin Tubbs


Deep Learning Recommendation on Persistent Memory

DLRM: An advanced, open source deep learning recommendation model <u>https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/</u>

Compute Anywhere – Edge to Core Technology

Customer Dynamics

Current Trends & Requirements

Large model & embedding table size

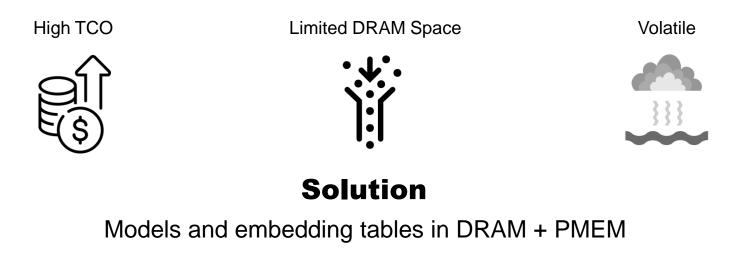
- Model size to GB level, embedding table size to TB level
- Multiple models on single server

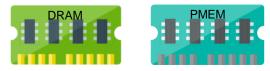
Model Size	GB
Embedding Table Size	TB

Fast for online inference service

Need be finished in tens of цs

Solution


Put models and embedding tables into DRAM



Customer Dynamics

Limitations

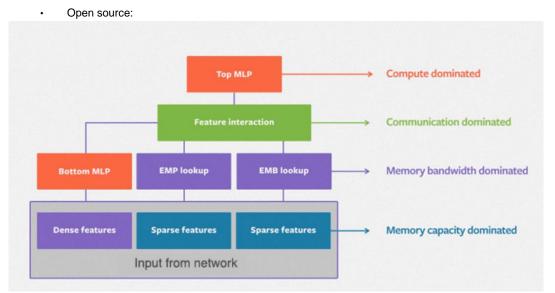
Case Study: AI / Machine Learning – Facebook's DLRM

Background

Customer Type: AL / ML Customer

Business Challenge:

Dynamic and Scalable Production Inferencing


Context:

- Scalable Model and Data Capabilities
- Enterprise Class Data Services
- Big Memory Computing Performance
 Demands

Penguin, MemVerge and Intel Solution

- > Deep learning recommendation model for personalization and recommendation systems
 - Consists of dense and sparse features
 - Dense feature: a vector of floating-point values
 - · Sparse feature: a list of sparse indices into embedding tables

Case Study: AI / Machine Learning – Facebook's DLRM

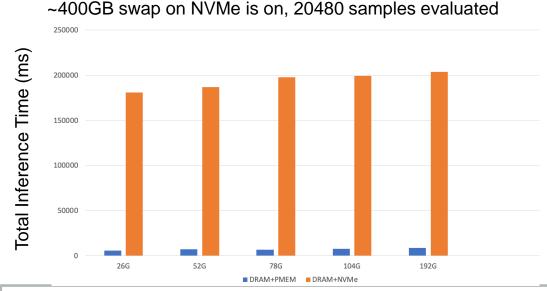
Background

Customer Type: AL / ML Customer

Business Challenge:

Dynamic and Scalable Production Inferencing

Platform:


 Innovative Big Memory Computing platform for leveraging persistent memory for realtime, AI/ML and Advanced Analytics and extensible to all memory – Centric workloads.

Software:

 Software Defined Architecture extracting performance benefits of cutting edge hardware supporting workload portability to truly compute anywhere with the memory speeds.

Penguin, MemVerge and Intel Solution

Result:

- Customer has state of the art AI/ML Big Memory Platform that is can scale and deliver performance when Data is Greater than Memory
- Achieved flexible software defined platform Big Memory Computing capabilities and poised for future dynamic model and data growth

PENGUIN

MemVerge

DC 🗖

Instant Model Snapshot and Rollback/Recovery for Online Serving

- How to improve the fault tolerance of new model publishing?
 - Pushing new model into production is risky
 - If failed, revert to last workable version ASAP
 - Rollback/Model reloading takes time (for large models) due to slow I/O
- Leveraging PMEM's persistence
 - Take a snapshot of the model serving application
 - Restore a snapshot without reloading from disk or remote storage
 - Snapshot can be published to many serving nodes through our fast pub/sub service
- Solution
 - Instantaneous snapshot without interrupting online inference
 - Instantaneous rollback without loading and publishing time
 - Snapshot, rollback, and recovery are within 1 second

1 Second

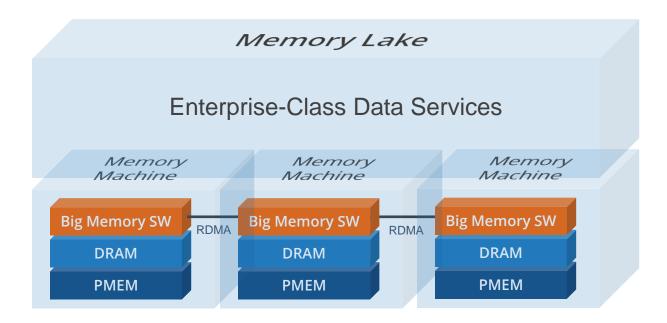
Customer PoV: Where Big Memory Fits

Darrell Westbury

Gradients of Memory and Storage

Balancing the Cost of Performance and Density

Туре		Approx. Latency		Density Scale			Relative Cost
CPU							
Registers		1 clock cycle		Bytes			N/A (within CPU die)
CPU Cache	BE						
L1 Cache		4 clock cycles	HIG	Kilobytes (2 10)	_		N/A (within CPU die)
L2 Cache	RP	10 clock cycles	HE	Kilobytes (2 10)	.Ow	2	N/A (within CPU die)
L3 Cache	ËR	20 clock cycles	R	Megabytes (2 ²⁰)	— П	VER	Premium (Special CPU SKU)
	FO		Ē				
Main Memory	RMAN		ISI-		U U		
DRAM	AN	100 nanoseconds (10 -9)	マ	Gigabytes (2 ³⁰)			High
3D XPoint	CE	250 nanoseconds (10 -9)		Gigabytes (2 ³⁰)			Medium-High
-							
Primary Storage							
NVMe SSD		150 microseconds (10 -6)		Terabytes (2 ⁴⁰)			Moderate
SAS SSD		500 microseconds (10-6)		Terabytes (2 ⁴⁰)			Reasonable
SAS HDD		3 milliseconds (10 -3)		Terabytes (2 ⁴⁰)	1	7	Low


Big Memory Lakes are now possible

MemVerge

(intel) IDC

MemVerge software enables memory pooling and realtime replication

Aided by ultra-low latency network such as RDMA and/or PCIe bridging technologies

NetApp

PENGUIN



What's magical and becomes possible in the near future:

Memory bus technologies, such as Intel's Compute Express Link (CXL) will further reduce inter-server latency

Instantaneous snapshots of memory, combined with CXL, will make the dream of dynamically composable infrastructure possible.

Pools of Disaggregated Resources

Try it

Contact <u>andrew.degnan@memverge.com</u> to sign-up for a PoC

Download this presentation at:

https://www.memverge.com/opening-the-door-to-big-memory/


View this webinar on the MemVerge YouTube Channel https://www.youtube.com/channel/UCLT4fehLcQiW4bfQgrHllpg/featured

What happens in memory stays in memory...